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Abstract 
Shared Object Networking (SON) 2.0 proposes a new foundation for the information economy—an internet 
where knowledge is persistent, verifiable, private, and economically aligned. At its core, SON establishes 
durable identities for information, ensuring that facts, interpretations, and context can accumulate without 
being lost or overwritten. It introduces mechanisms for confidence, reputation, and evidence so that trust is 
measurable and patterns become reliable only through repeated validation. Privacy and governance are built 
into the structure itself, enabling data to circulate freely while remaining subject to policy and rights of use. 
Every interaction—whether by a human or an autonomous agent—operates under explicit economic 
contracts, making information exchange accountable and sustainable. 

SON addresses the central failures of today’s AI and internet ecosystems: the fragility of models that cannot 
persist knowledge, the loss of agency as platforms monetize user context, the erosion of privacy and rights in 
data pools, and the absence of a viable economic model for publishers and creators. By combining the 
persistence of knowledge graphs, the adaptability of adversarial multi-agent systems, the accountability of 
cryptographic provenance, and the incentive structures of decentralized economies, SON outlines a path 
toward a distributed knowledge substrate. The result is an information network that scales from enterprise 
deployments to global use, aligning the values of AI, privacy, and crypto into a coherent protocol for the next 
generation of the internet. 

Introduction 
The Shared Object Networking (SON) model, first described in 2009, proposed a new way to represent and 
share knowledge across distributed systems. Rather than treating information as a stream of transient 
documents or opaque database rows, SON treated every entity as a Well-Known Object (WKO): a persistent 
identifier that could be recognized across contexts and over time. These objects were not static records but 
evolving anchors. Around them, SON introduced the concept of a z-axis layering model: declarative facts 
lived at the core, while contextual interpretations, inferences, and external references accumulated in higher 
layers. This separation meant that multiple perspectives on the same object could coexist without overwriting 
the base identity. Knowledge could grow and adapt without duplication, while provenance and attribution 
were always preserved. 
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In 2010, the Persistent Object Networks (PON) work expanded this foundation. It described SON as a living 
fabric of knowledge that evolves through a set of operational mechanisms: layers could be published and 
selectively adopted by diZerent participants; repeated validation of relationships could lead to pattern 
crystallization, where tentative links “sank” into more stable layers; obsolete or untrusted assertions could be 
pruned without harming the underlying objects; and reputation could be attached to both sources and 
assertions, weighting adoption decisions without requiring a single central authority. These ideas pointed 
toward a distributed system where trust, persistence, and evolution emerged from the interaction of many 
participants rather than being imposed from above. 

At the time, the infrastructure for building such a system did not exist. Large language models (LLMs) had not 
yet matured, graph databases were niche, and decentralized governance mechanisms were still 
experimental. Fifteen years later, the landscape looks very diZerent. Modern AI architectures combine 
symbolic graphs with semantic embeddings, event-driven systems ingest and normalize data in real time, 
and decentralized economic models such as DAOs have demonstrated how rules and incentives can be 
enforced without central intermediaries. This convergence made it possible to revisit SON’s original vision 
and translate it into practice. 

The 2025 paper Distributed GraphRAG via SON was the first concrete demonstration. It showed how SON’s 
separation of facts from inferences could be implemented with a property graph (Neo4j) and a vector 
database, with events flowing through an ingestion backbone to normalize data into objects and evidence 
chains. It also demonstrated how layer exchange could allow participants to share or withhold layers 
selectively, federating knowledge without requiring a universal schema or trusted broker. This work positioned 
SON not just as an abstract model but as a viable architecture for retrieval-augmented generation, symbolic-
neural integration, and distributed reasoning. 

SON 2.0 builds directly on these foundations. It retains the theoretical primitives—persistent WKOs, z-axis 
layering, pattern crystallization, pruning, and reputational weighting—but situates them in a broader context 
of AI, security, and decentralized economics. Objects are schema-bound and self-describing, making them 
both interpretable and machine-usable. Layers are modular and adversarial, enabling independent agents to 
maintain competing views that are reconciled through evidence and reputation rather than central fiat. Sub-
objects extend this modularity, allowing functions such as Watchtower (RBAC/ABAC enforcement through 
PDP/PEP separation and encryption) to be embedded only where needed. Gas-metered execution and DAO-
style governance provide the economic foundation, ensuring that every computation, inference, and 
decryption operates under explicit cost, risk, and policy constraints. 

This paper introduces SON 2.0 as a layered architecture for persistent, decentralizable knowledge and 
agentic reasoning. It begins by restating the core SON concepts in practical terms, then describes how z-axis 
layers and housekeeping agents manage uncertainty and growth. It explores the adversarial dynamics of 
confidence, reputation, and evidence, and extends those dynamics into access control through Watchtower. 
It then shows how gas, SLOs, and DAO-aligned economics make SON 2.0 a contract-based framework for 
knowledge at scale. While the immediate focus is a Security Operations Center MVP, the broader vision is a 
global substrate for persistent, verifiable, and economically aligned knowledge sharing. 

The Broader Vision 

The timing for SON 2.0 is deliberate. Today’s LLM- and RAG-based systems are powerful but fragile: they lack 
persistence, conflate facts with inferences, and treat context as disposable. Security and privacy pressures 
are mounting as enterprises struggle to share knowledge without leaking sensitive data. At the same time, the 
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economics of information are misaligned — computation is often opaque and unbounded, with no clear 
mechanism for cost, accountability, or provenance. SON 2.0 addresses these gaps directly. By separating 
immutable objects from their interpretive layers, enforcing access control through modular Watchtower sub-
objects, and grounding every operation in a gas-metered contract, SON provides a framework where 
knowledge is persistent, private, and economically accountable. 

Although this paper presents a local MVP in the high-stakes domain of Security Operations Centers, the 
broader vision is a global, contract-based, economically aligned knowledge substrate. SON’s primitives — 
immutable WKOs, z-axis layering, reputational scoring, per-layer RBAC, and gas-metered execution — can 
scale into an internet-wide model where knowledge is not only shared but traded under enforceable terms. In 
this model, inference and information consumption across the network are deterministic, transparent, and 
monetized. Privacy and provenance become guarantees rather than aspirations, and the information 
economy shifts from ungoverned extraction toward accountable, decentralized exchange 
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Related Work & Positioning 
The design of SON 2.0 builds on over a decade of prior research in knowledge representation, adversarial 
machine learning, decentralized systems, and enterprise security models. Its novelty lies not in reinventing 
these foundations, but in combining them into a unified protocol layer where persistence, provenance, 
privacy, adversarial resilience, and explicit economics reinforce one another. 

Early work on Shared Object Networking (2009) introduced the notion of Well-Known Objects (WKOs): 
persistent identifiers designed to separate immutable facts from mutable context or interpretation. Persistent 
Object Networks (2010) extended this into operational mechanics, proposing layer publishing, selective 
adoption, repeated validation leading to pattern crystallization, and pruning of untrusted assertions without 
damaging underlying objects. These ideas foreshadowed the modular, layered reasoning systems that SON 
2.0 now makes technically feasible. 

More recently, Distributed GraphRAG via SON (2025) demonstrated how these principles could be 
implemented with modern infrastructure: combining property graphs (Neo4j), vector databases (e.g., 
Pinecone, Weaviate, FAISS), and event-driven ingestion pipelines (Kafka, Flink) to normalize data into objects 
and evidence chains. That prototype showed how selective layer exchange could enable federated 
knowledge without a universal schema or centralized broker, directly anticipating SON 2.0’s federated z-axis 
design. 

Beyond its own lineage, SON 2.0 sits at the convergence of four broader research trajectories that have 
matured largely in isolation: 

1. Knowledge Graphs and Semantic Web Standards 
• EZorts such as Wikidata, Cyc, and the Semantic Web (RDF, OWL, SPARQL) established 

schema discipline, linked data principles, and ontology engineering as means to achieve 
persistence and interoperability. 

• However, these systems are brittle, centralized, and poorly suited to adversarial or uncertain 
knowledge. They assume consensus, rather than embracing contestation. SON builds on 
their object-and-schema discipline but introduces z-axis layering to hold contradictory or 
provisional knowledge without corruption. 

2. Large Language Models and Retrieval-Augmented Generation (RAG) 

• Modern LLMs (e.g., GPT-4, PaLM, Claude) and hybrid architectures such as REALM (Lee et 
al., 2020), RETRO (Borgeaud et al., 2022), and FiD (Izacard & Grave, 2021) demonstrated that 
grounding generation in external retrieval improves accuracy and reduces hallucination. 

• These systems, however, lack persistence and provenance: they answer in the moment, 
then forget. SON builds directly on RAG principles but introduces persistent objects and 
evidence chains, enabling retrieval that is auditable, reusable, and accumulative over time. 

3. Adversarial and Multi-Agent Systems 
• Generative Adversarial Networks (GANs, Goodfellow 2014) introduced structured opposition 

(generator vs discriminator) as a path to robustness. 
• Mixture-of-Experts architectures (MoE, Shazeer et al. 2017; Switch Transformer, Fedus et al. 

2021) showed how gating can dynamically weight specialized models for eZiciency. 
• Graph Neural Networks (GCNs, GATs) demonstrated how node-level features propagate 

across graphs for inference. 



Shared Object Networking 2.0 

 7 

• SON adapts these principles to knowledge networks: Explorers mirror generators, 
Conservatives mirror discriminators, Orchestrators act as gating functions, Aligners 
resemble ontology mappers and GNN aggregators. Together, they provide adversarial 
resilience in the z-axis, turning disagreement into a mechanism for trust. 

4. Decentralized Governance and Economic Protocols 
• DAO-style systems (Ethereum, Hyperledger, Tendermint) proved that decentralized actors 

can coordinate through smart contracts and reputation systems. 
• Enterprise security frameworks (RBAC/ABAC, NIST SP 800-171, PDP/PEP architectures) 

defined robust models for access control and compliance. 
• SON incorporates these lessons but decouples economics from the knowledge substrate: 

gas is not a cryptocurrency but a localized accounting mechanism. Watchtower embeds 
PDP/PEP enforcement directly into objects, while DAOs serve as open governance patterns 
for cross-domain knowledge exchange. 

Taken together, these streams underscore why SON 2.0 constitutes new intellectual property rather than an 
incremental extension: 

• From knowledge graphs, SON inherits persistence but rejects centralization, introducing adversarial z-
axis layering. 

• From LLMs and RAG, it inherits retrieval-augmented inference but adds provenance and persistence, 
making knowledge durable and auditable. 

• From adversarial AI and ensemble learning, it inherits disagreement as a strength but extends it to 
knowledge networks with multi-agent balancing. 

• From decentralized governance and enterprise security, it inherits contracts and policies but embeds 
them directly into objects, enforced at the point of consumption. 

No prior system unites these elements into a layered protocol for knowledge that is at once persistent, 
private, auditable, adversarially resilient, and economically aligned. SON’s novelty lies in this synthesis. It 
treats objects, layers, Watchtowers, agents, and DAOs not as disconnected techniques but as 
interdependent primitives in a single architecture. This integration provides the foundation for a new kind of 
internet: one where knowledge itself — not just data streams, tokens, or compute cycles — circulates under 
transparent, enforceable rules.  
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Part 1: Foundations 

Abstract 
Part I introduces the foundations of Shared Object Networking (SON) 2.0: persistent objects with schema-
bound features, z-axis layering for separating facts from inferences, housekeeping agents for maintaining 
graph health, confidence and reputation mechanisms for trust, and access control for privacy and 
governance. Together these components establish SON as a framework for persistent, auditable, and 
economically accountable knowledge networks. 

Introduction 
The systems we rely on today for knowledge were never designed for what we now demand of them. The first 
generation of information technology was little more than storage in proprietary formats, on proprietary 
machines, accessible only through proprietary code. Each system was an island. Later, common applications 
and shared networks like the internet gave us standard interfaces and global reach. But the underlying logic 
never changed: information remained fragmented, bound to the structure of documents or the quirks of web 
pages, presented in whatever form an author chose. Humans were left to sift through the noise, and 
machines could only scrape and index. 

This is why search engines became indispensable: they papered over a messy substrate by finding and 
ranking what might be useful. Large language models are the latest step — compressing the web into fluid 
summaries, but still without persistence, provenance, or accountability. They answer in the moment, then 
forget. They flatter fluency but erode agency, because neither users nor publishers have control over how 
knowledge is consumed, trusted, or valued. 

SON represents the next phase. It rejects the idea that information must be fragile, ephemeral, or locked in 
formats optimized for display. Instead, it anchors knowledge in persistent objects whose identities endure, 
enriched by structured features, surrounded by layers that hold facts, context, and interpretations side by 
side. SON presents knowledge to humans in ways that are transparent, contextual, and accountable to its 
origins, while providing machines and agents with the structure they need to reason reliably on our behalf. 

But more than a new representation, SON is a claim of agency. It is a framework for an information economy 
that validates our values: persistence, so knowledge endures; privacy, so sensitive data remains governed; 
autonomy, so each participant can define their own view; provenance, so origins remain visible; economy, 
so contributions are compensated; and adversarial resilience, so systems grow stronger under challenge 
rather than collapsing under disagreement. 

The pattern is clear. The trajectory of information systems is no longer in question; it is only a matter of 
whether we establish our agency or allow the technology to overcome us. To borrow a hockey analogy: the 
puck is already moving. SON is an attempt to skate to where it is going, carrying our values with us. 

If we fail, the systems will evolve without them. 
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Core Shared Object Networking (SON) Concepts 
At the heart of SON 2.0 is a simple but powerful commitment: knowledge can be broken down into objects 
that persist, no matter how our understanding of them changes. A person remains the same individual 
whether described in a database, a log file, or a case note. A company remains the same entity whether 
captured in financial filings, a news article, or a security alert. SON makes this persistence explicit: every 
object has a stable identity that never changes, even as attributes, evidence, and interpretations accumulate 
around it. 

Once knowledge is anchored to persistent objects, SON builds outward through a set of interlocking 
concepts: 

• Layering allows declarative facts, inferences, and context to coexist without overwriting one another. 
• Autonomy ensures each participant can publish, adopt, and govern their own layers, schemas, and 

Watchtower policies without central control. 
• Privacy allows sensitive data to remain encrypted or wrapped, while still contributing structure, 

provenance, or reputational weight to the shared fabric. 
• Economy makes every computation, retrieval, and decryption accountable: nothing is free-floating; all 

operations are costed through gas and governed under explicit service-level objectives. 
• Adversarial Resilience treats disagreement among agents not as a flaw but as a strength, with 

confidence and reputation emerging from the tension of competing views. 

These core ideas are not stand-alone features; they interact as parts of a larger architecture. Objects provide 
persistence; layering provides adaptability; autonomy ensures sovereignty of perspective; privacy and 
economy provide control; and adversarial resilience provides rigor. Together they create a system that can 
scale across organizations and domains without collapsing into either central authority or uncontrolled 
fragmentation. 

The remainder of Part 1 unpacks how these concepts function in practice: 

• Objects & Schemas describes the structure of persistent knowledge objects and how schemas act as 
feature contracts across domains. 

• Z-Axis Layers explains how declarative, inferential, contextual, and external reference layers surround 
objects, and how housekeeping agents manage their growth. 

• Confidence, Reputation & Evidence introduces the mechanisms that determine what can be trusted, 
how reliability is remembered, and how provenance is preserved. 

• Access Control via Watchtower shows how privacy and governance are enforced at the point of 
consumption, enabling persistence without loss of control. 

• DAO and Gas details how compute is bounded by budget and how cooperative governance protocols 
regulate cross-domain exchanges. 

• Adversarial Agents & Balancing Algorithms demonstrates how structured disagreement among agents 
drives robustness, linking SON’s housekeeping dynamics to established adversarial and ensemble 
paradigms. 

• Adversarial Challenges acknowledges the open questions: compute scaling, inference validity, evidence 
growth, governance risks, interpretability, and compliance. 
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Finally, the section on the Security Operations Center (SOC) MVP grounds these abstractions in a high-stakes 
real-world domain. The MVP illustrates how the primitives interoperate under pressure: objects anchoring 
identities, z-axis layers capturing events and hypotheses, evidence chains preserving provenance, 
Watchtower securing sensitive data, and DAO-governed gas contracts ensuring sustainable reasoning. 

The SOC example is only a beginning. The true scale of SON 2.0 is global: a knowledge substrate that can 
extend across enterprises, institutions, and public networks, enabling information to persist, be shared, and 
be traded under enforceable terms. Part 2 of this work will move from concepts to architecture and 
implementation, showing how these building blocks are assembled into a working MVP and then into a 
blueprint for distributed, multi-tenant, economically aligned knowledge networks. 

Visual Concept: SON 2.0 Architectural Layers 
Layout: Vertical stack of layers, from bottom (foundational) to top (application), with arrows showing how 
each layer interacts. Each block is labeled and annotated. 
 
Layer 1 – Objects & Schemas (Foundation) 
• What it is: Persistent, schema-bound objects. Metadata always routable; payloads optionally sealed. 
• Icon: Cylinder with an outer “metadata ring” and inner “payload core.” 
• Caption: “Stable anchors of identity; containers for features, evidence, and policies.” 
 
Layer 2 – Z-Axis Layers 
• What it is: Declarative, inference, contextual, and external reference layers surrounding objects. 
• Icon: Stack of horizontal bands above the object cylinder. 
• Caption: “DiZerent knowledge perspectives coexist without overwriting the base object.” 
 
Layer 3 – Housekeeping Agents 
• What it is: Explorers, Conservatives, Pruners, Orchestrators, Aligners, Curators. 
• Icon: Small agent icons circling the Z-axis stack, arrows pointing inward and outward. 
• Caption: “Adversarial interplay manages uncertainty, pruning, aliasing, and balance.” 
 
Layer 4 – Confidence, Reputation & Evidence 
• What it is: Mechanisms that record trust, weight sources, and attach evidence chains. 
• Icon: Scales or ledger book symbol next to the stack. 
• Caption: “Trust emerges from repeated validation, recorded in evidence chains and reputational 

weights.” 
 
Layer 5 – Watchtower (Access Control) 
• What it is: Sub-objects enforcing RBAC/ABAC at the point of consumption, with attestation and 

attribution. 
• Icon: Padlock symbol attached to the payload core of the object. 
• Caption: “Privacy and governance embedded into the object model.” 
 
Layer 6 – DAO & Gas (Economic Layer) 
• What it is: Gas metering for compute and DAO-style protocols for cross-domain governance. 
• Icon: Coin stack + contract scroll adjacent to the agent layer. 
• Caption: “Every operation costed, governed, and auditable.” 
 
Layer 7 – Applications / MVPs (Top Layer) 
• What it is: Domain-specific deployments (e.g., SOC, finance, medicine). 
• Icon: Dashboard or domain icons above the architecture stack. 
• Caption: “Use-cases built on SON primitives; SOC MVP as first demonstration.” 
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Overall Caption: 
“SON 2.0 as a layered architecture: persistent objects at the base, surrounded by z-axis knowledge layers, 
managed by adversarial agents, validated by evidence and reputation, secured by Watchtower, governed 
by DAO and gas contracts, and applied in domain-specific deployments.” 
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Objects & Schemas 
 The object is the atomic unit of SON 2.0. Every piece of knowledge begins as a persistent object, a uniquely 
identified node in the network whose identity never changes even as our understanding of it evolves. 
Persistence is the anchor that makes everything else possible: it allows the same entity to be recognized 
across time, across layers, and across domains without duplication or drift. An object can accumulate new 
evidence, gain or lose attributes, or be referenced by competing inferences, yet it remains the same anchor 
point in the graph. 

This approach diZers from the ways most information systems have historically organized data. A relational 
database treats entities as rows in a table—rigid, tightly bound to a fixed schema, and diZicult to extend 
across domains without migrations. A document system like a wiki or PDF repository captures knowledge in 
freeform text, but without persistence or machine-readable semantics; each new document risks duplicating 
or contradicting the last. Even most vector-based AI systems treat knowledge as temporary embeddings—
useful for search, but opaque and non-persistent. SON objects sit in between: structured enough to 
interoperate, flexible enough to extend, and persistent enough to serve as durable anchors for reasoning. 

Objects are not flat records but structured, self-describing containers. Each is bound to a schema, which 
specifies what kind of object it is and what features it can carry. Schemas themselves are objects, and they 
form a hierarchy of well-known types that can be extended without breaking compatibility. A Person schema, 
for example, might inherit from a more general Actor schema, ensuring that identifiers, aZiliations, and roles 
are standardized. This schema discipline allows objects from diZerent domains to interoperate cleanly, while 
still giving participants autonomy to define extensions suited to their needs. 

For readers more familiar with machine learning than with knowledge graphs, it may help to think of a schema 
as a feature definition. In an expert learning network or a graph neural network (GNN), predictive accuracy 
depends on what features are available for each node: names, timestamps, relationships, attributes. SON 
schemas make these features explicit and portable. A schema is both a contract for interoperability and a 
definition of the features that models can use. This means the same object that anchors identity in a graph 
can also serve directly as input to inference models, bridging symbolic reasoning and statistical learning. 

The dual structure of objects—metadata and payload—enables SON’s privacy and economic model. 
Metadata fields are always available, making the graph discoverable and linkable. Payloads, by contrast, may 
contain sensitive or proprietary data. These can remain unencrypted if they are meant to be public, or sealed 
inside a Watchtower-controlled sub-object if they require access policies. In this way, an object can always 
participate in the network without exposing its secrets: it is linkable, auditable, and usable as a feature in 
reasoning, while still protecting sensitive content behind modular access control. 

Because objects are schema-bound, they serve multiple roles at once. They are anchors of persistence in the 
graph, feature carriers for inference and prediction, and containers for privacy-preserving data that can be 
unlocked only under explicit terms. This makes them equally useful to graph algorithms, to reasoning agents, 
and to human operators who need interpretability. Objects can even be vectorized into embeddings for 
semantic search, clustered for anomaly detection, or consumed directly by GNNs. Across these uses, the 
schema provides both consistency and transparency: the object knows what it is, and others can too. 

In practice, this means a User Account object in a Security Operations Center might appear in many guises. 
In a declarative layer it may carry a login identifier. In an inference layer it may be linked to a lateral movement 
hypothesis. In a contextual layer it may be tied to an analyst’s case notes. In a Watchtower payload it may 
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contain sensitive HR data. The user is one object throughout, persisting across all layers, interoperable 
across schemas, and accessible only under the rules defined by its publishers. 

Objects and schemas are therefore the first and most essential building block of SON 2.0. They embody 
persistence, enable autonomy in schema extension, preserve privacy through modular payloads, participate 
in the economic model by gating access through Watchtower and gas, and scale globally by serving as stable 
anchors across domains. Everything that follows in SON—layering, housekeeping, confidence and 
reputation, access control—rests on this foundation. 

Objects & Schemas (analogy) 
One way to think about SON objects is to compare them to packets on the internet. A packet is always the 
same packet — it has a header that routers can read (metadata), and a payload that only the intended 
recipient can unwrap. Routers don’t need to know what’s inside the payload to forward the packet correctly; 
the header is enough to make it useful. 

SON objects work the same way. The metadata — the schema-defined features that are always visible — lets 
the object participate in the graph, be linked to others, and be used as features in reasoning. The payload can 
be encrypted, private, or even wrapped by Watchtower, but the object is still discoverable and useful without 
it. This means knowledge can move through the network like packets move through the internet: carrying both 
public routing information and optional private content, usable by many systems without ever losing its 
identity. 

In the next section, we extend this analogy to the z-axis layers. If objects are packets, then z-axis layers are 
like the protocol stack that sits around them. Just as TCP, IP, and application protocols layer functionality on 
top of packets without changing the packet itself, SON layers allow declarative facts, inferences, and 
contexts to build outward from the same object without overwriting its identity. 

Visual Concept (carryable to z-axis): 
• A diagram with an object onion: 
• Outer ring = metadata (always visible) 
• Inner ring = payload (encrypted or plain) 
• A Watchtower lock icon next to the payload ring to show controlled access. 
• Label arrows: “Metadata = routing header,” “Payload = packet contents.” 
• For the z-axis section, we can stack these “object onions” under layers that resemble a protocol 

stack (declarative → inference → contextual → external reference), showing how the same object can 
be interpreted diZerently at each layer. 

Synthesis 
Objects and schemas provide the bedrock on which SON is built. Objects ensure that identities persist, while 
schemas define the feature edges that make those objects interoperable across domains. In this way, a 
schema is more than just a structural template: it is the contract that specifies how an object can participate 
in the graph and how its attributes can serve as inputs to reasoning. By making these features explicit and 
portable, schemas transform persistent objects from static records into nodes in a predictive network, 
directly usable by both symbolic reasoning engines and statistical inference models. 

This dual function positions schemas as the hooks for semantic inference in retrieval-augmented generation 
(RAG) and other AI workflows. A schema defines not only what is visible in the object’s metadata but also 
which features can be vectorized, clustered, or consumed by downstream models. This makes SON objects 
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seamlessly bridgeable: they can be discovered through symbolic queries, retrieved through vector similarity, 
or passed as structured inputs to machine learning systems. 

Thus, objects and schemas do more than ensure persistence. They embed the semantics that enable 
reasoning, retrieval, and interoperability, grounding the graph in a form that is both human-auditable and 
machine-actionable. Later sections build on this principle: z-axis layers show how schemas accumulate 
across contexts; confidence, reputation, and evidence show how feature-level claims are validated; 
Watchtower embeds governance directly into schema-bound objects; and DAO & gas ensure that schema-
driven computations remain accountable. In every case, the schema is the interface between persistence 
and inference — the element that makes SON not just a storage system but a reasoning substrate.  
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Z-Axis Layers 
If objects are the “packets” of SON 2.0, then the z-axis layers are the protocol stack that surrounds them. Just 
as TCP/IP adds functionality above a network packet without altering its identity, z-axis layers add context, 
inference, and interpretation around an object without ever overwriting the object itself. The object remains 
the persistent anchor; the layers provide the flexible space where knowledge can grow, disagree, and evolve. 

The purpose of the z-axis is to absorb uncertainty, disagreement, and change. The declarative plane holds 
only stable, evidence-backed facts. Everything else — a tentative mapping, a hypothesis, a contextual 
annotation, a reference to an external system — belongs in the z-axis. This design ensures that objects 
remain consistent even when perspectives about them diZer. Two organizations can hold conflicting views 
about the same object, or two reasoning agents can draw opposite inferences, without corrupting the 
underlying identity. 

In practice, the z-axis supports classes of layers rather than a fixed set. A declarative layer records what is 
observed and confirmed. An inference layer proposes new relationships derived from reasoning or prediction. 
A contextual layer situates an object in a case, workflow, or narrative. External reference layers link an object 
to outside vocabularies, ontologies, or third-party sources. Within each class, many specific layers may exist: 
some private, some shared, some specialized to a single purpose. The important point is not the number of 
layers but the separation of roles. Each class makes its epistemic status explicit, so consumers know 
whether they are reading a fact, an inference, a context, or an external link. 

Maintaining these layers requires constant housekeeping. SON does not rely on a single controller but on a 
federation of specialized agents, each operating independently on its own z-axis view. One agent may focus 
on deduplication, collapsing redundant objects into canonical anchors. Another may specialize in pruning, 
removing edges whose confidence has decayed or been contradicted. A third may apply back-propagation, 
sending corrective signals upstream when merges prove wrong or reinforcing signals when patterns 
crystallize. These functions are best understood as classes of housekeeping behaviors — deduplication, 
pruning, back-propagation, orchestration — with many possible implementations. Some agents are 
conservative, others exploratory. Their disagreements are not failures but inputs to the system’s resilience: 
confidence emerges from the tension between adversarial perspectives, not from any one model’s authority. 

Because housekeeping agents expend resources, each operates under explicit gas and SLO contracts. An 
agent must decide whether a tentative mapping is worth the cost of validation, whether to prune aggressively 
or conserve links for further evidence. This makes housekeeping both an epistemic and an economic 
process. Enterprises can tune how cautious or adventurous their agents are by adjusting SLOs and budgets, 
just as protocols tune latency and throughput. 

The result is a z-axis that reflects SON’s core ideas. Persistence is preserved because objects never change 
even as their layers evolve. Autonomy is supported because anyone can publish their own layers. Privacy is 
protected because sensitive payloads can remain sealed in Watchtower sub-objects while still participating 
through metadata. Economy is built in because every operation consumes gas under a declared contract. 
Adversarial resilience is achieved by allowing competing agents to disagree, with orchestration weighting 
their views. And global scale is possible because layers can be shared or withheld across organizations 
without breaking the protocol. 

Later in this paper, the SOC MVP will show how these principles play out in a real domain: declarative layers 
capturing observed events, inference layers proposing attack paths, contextual layers tying objects to 
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investigations, and external reference layers linking to ATT&CK and NIST frameworks. But the SOC is only one 
illustration. At internet scale, the same layering model could govern how enterprises, institutions, and 
individuals exchange knowledge safely, privately, and under enforceable economic terms. 

Visual Concept: The Object + Protocol Stack 
1. Base object onion (from previous section) 

• Inner circle = Payload (optionally encrypted, Watchtower lock symbol). 
• Outer circle = Metadata (always visible, schema features). 
• Caption: “Objects are persistent packets: metadata routes and links, payloads hold 

optional private content.” 
2. Stacked layers above the object 

• Draw horizontal layers stacked upward above the object onion, like a protocol stack: 
• Declarative Layer → “Stable facts, evidence-backed.” 
• Inference Layer → “Proposed relationships, predictions.” 
• Contextual Layer → “Narratives, workflows, situational links.” 
• External Reference Layer → “Pointers to outside vocabularies, ontologies, third-party 

data.” 
• Each layer has arrows pointing back down to the object onion, showing that all layers 

surround the same persistent object. 
3. Housekeeping agents around the stack 

• Small “agent” icons (circles with diZerent symbols) placed around the layers. 
• Labels like: 
• Deduplication Agent → merges duplicates. 
• Pruning Agent → trims stale edges. 
• Back-prop Agent → pushes corrections. 
• Orchestration → aggregates opinions. 
• Show arrows pointing inward to layers, with some “conflict” arrows (e.g. one agent 

proposing merge, another opposing it). 
4. Economic constraint (gas) 

• At the side of the diagram, a fuel gauge or coin stack icon labeled “Gas & SLO”. 
• Arrow pointing to agents, showing that every housekeeping action consumes gas under 

explicit contract. 
5. Global scale context 

• Multiple “object + stack” diagrams shown side-by-side, with dashed lines linking objects 
across them. 

• Caption: “Layers can be local or shared; persistence ensures interoperability across 
organizations.” 

This way the visual builds on the onion (object as packet) → extends it with a stack (layers as protocol 
functions) → surrounds it with adversarial agents → constrains it with gas/SLO → and shows how it scales 
globally. 

 

A Brief Note on Adversarial Networks 
The concept of adversarial networks entered machine learning in 2014 with Ian Goodfellow’s Generative 
Adversarial Networks (GANs). In a GAN, two models are trained in opposition: a generator creates 
synthetic data while a discriminator tries to tell real from fake. Each improves through competition, and the 
result is a system that becomes more robust through tension rather than harmony. GANs showed that 
opposition could serve as a training signal, not just an obstacle. 
 
Over time, the adversarial principle spread into other areas. Adversarial training hardened models by 
deliberately introducing perturbed examples that forced resilience. Mixture-of-experts (MoE) architectures 
extended the idea further, combining the outputs of multiple specialized models that sometimes 
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disagreed, with a gating mechanism balancing their contributions. More recently, multi-agent AI systems 
have embraced adversarial roles explicitly, designing agents that probe, question, or even challenge one 
another, on the principle that disagreement yields stronger, more careful reasoning than untested 
consensus. 
 
SON draws directly on this lineage. Its housekeeping agents are designed to disagree: some merge 
aggressively, others split cautiously, others suspend judgment until corroboration appears. Reputation 
systems reward not only consensus but also the ability to challenge weak evidence. Watchtower services 
apply the same philosophy to access control, assuming distrust until the requester proves otherwise. In 
each case, SON leverages adversarial dynamics as a feature, not a flaw. Just as GANs produced more 
capable models by pitting generator against discriminator, SON builds more trustworthy knowledge 
networks by allowing its agents to dispute, test, and recalibrate one another’s claims. 

Synthesis 
The z-axis is the pivotal mechanism of SON 2.0. It transforms persistent objects from static anchors into the 
foundation of a living, extensible knowledge fabric. By separating declarative facts, provisional inferences, 
contextual interpretations, and external references, the z-axis makes it possible to combine disparate 
knowledge sets in ways that preserve privacy, maintain traceability, and enable extensibility without forcing 
premature consensus. Each organization, system, or agent can publish its own layers, yet interoperability is 
preserved through shared object anchors and schema discipline. 

The z-axis is also where SON’s other principles begin to converge. Privacy is preserved because sensitive 
payloads remain sealed, while only metadata and structural links surface across layers. Traceability is 
maintained because every edge carries its provenance, allowing evidence chains to be revisited or 
challenged. Extensibility emerges because new interpretations can accumulate in higher layers without 
destabilizing core objects, allowing knowledge to grow continuously. Adversarial resilience is built in, as 
multiple agents operate across the z-axis: some proposing merges, others pruning, still others withholding 
judgment until corroboration appears. The disagreements they surface are not noise but the raw material 
from which confidence and reputation later emerge. 

In this sense, the z-axis is not simply a data model but a design philosophy: knowledge should be layered, 
contextual, and contestable rather than brittle and monolithic. Later sections build directly on this principle. 
Confidence, reputation, and evidence show how SON evaluates the claims made in the z-axis and turns them 
into structured trust. Watchtower access control extends z-axis modularity into governance, ensuring that 
layers can be published widely without compromising sovereignty. DAO and gas introduce economic 
contracts to discipline the housekeeping of z-axis layers and enforce fairness in cross-domain queries. And 
adversarial agents make explicit the balancing functions that keep z-axis growth robust rather than chaotic. 

The z-axis thus functions as SON’s hinge: it connects the permanence of objects to the dynamism of 
knowledge, and it enables persistence, privacy, provenance, economy, and adversarial resilience to reinforce 
one another. Every subsequent mechanism described in this paper — from confidence scoring to governance 
protocols — is, in eZect, a way of managing the z-axis so that knowledge can evolve safely and remain 
trustworthy at scale.  
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Confidence, Reputation & Evidence 
Up to this point, we have described how SON structures knowledge into persistent objects and surrounds 
them with layers that can carry competing perspectives. The natural question that follows is: how does the 
system decide which claims to take seriously, which to defer, and which to discard? In other words, how does 
SON measure what it trusts? The answer lies in three interdependent concepts: confidence, reputation, and 
evidence. 

Confidence in SON is never the product of a single calculation. Instead, it emerges from the interplay of 
multiple housekeeping agents, each operating on its own z-axis layer and applying its own algorithmic 
strategy. One agent might calculate confidence based on semantic similarity of attributes; another might rely 
on temporal consistency across events; a third might enforce strict schema alignment. Some agents are 
tuned to be cautious, assigning low confidence until corroboration accumulates, while others are more 
exploratory, proposing high-confidence links that may later be pruned. Their outputs may disagree sharply, 
but in SON disagreement is not a failure — it is the very mechanism by which robustness emerges. 

This approach has a direct lineage in machine learning. In 2014, Ian Goodfellow introduced Generative 
Adversarial Networks (GANs), in which two models are trained together in opposition: a generator that 
produces synthetic data and a discriminator that tries to tell real from fake. Each improves by competing with 
the other, and the result is a system more capable than either could achieve alone. GANs marked the 
moment when researchers realized that structured opposition could be a source of strength, not just a 
source of noise. 

The adversarial principle broadened over time. In adversarial training, models are hardened by being 
deliberately exposed to counterexamples or perturbations designed to trick them, forcing the models to learn 
resilience. In mixture-of-experts (MoE) architectures, many specialized models contribute diZerent views, 
and a gating mechanism decides which experts to consult for a given task. Here too, the value lies not in 
forcing agreement but in balancing specialized perspectives — a system that is richer because its experts 
sometimes disagree. 

SON extends these ideas beyond neural networks and into knowledge networks. Its housekeeping agents 
function like experts in a mixture-of-experts system: each has its own specialization and bias, and the 
orchestration layer acts as the gate, weighting their contributions based on the service-level objectives 
(SLOs) and gas budgets set by the user. Unlike neural models, however, SON preserves the independence of 
these experts. They do not collapse into hidden layers; they remain visible, auditable, and contestable, with 
evidence trails attached to every claim. 

The result is that confidence in SON is always contextual, probabilistic, and traceable. Reputation attaches 
not only to claims but to the agents and sources that make them, rising or falling as their assertions survive or 
fail repeated scrutiny. And evidence provides the substrate that makes both confidence and reputation 
meaningful: without evidence chains, numbers would be arbitrary, and without reputation, history would 
carry no weight. Together, these three form the backbone of SON’s resilience. They allow the network to 
accept uncertainty, to reward sources that prove reliable, to challenge those that do not, and to crystallize 
patterns only when they have endured enough adversarial testing to merit trust. 

Why SON Learns 
Most knowledge systems do not learn. They store information, sometimes they prune it, but they do not 
improve themselves through their own history of mistakes. SON is diZerent. It is designed so that errors — 
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wrong merges, weak edges, disproven inferences — are not simply removed but treated as feedback 
signals. Like modern machine learning, SON turns error into the fuel for improvement. 
 
The breakthrough that made neural networks and large language models practical was error-driven 
correction, better known in machine learning as back-propagation. In a neural net, predictions are 
compared against the correct answer. The diZerence — the error — is then pushed backward through the 
layers, and each connection is adjusted in proportion to how much it contributed to the mistake. Over 
many iterations, this process tunes the model into a more accurate predictor. Without back-propagation, 
deep learning would not scale beyond toy problems. 
 
SON applies the same principle, but to knowledge graphs instead of neurons. When a merge is rolled back, 
when an inference fails, or when a weak edge is pruned, the correction does not stop at the surface. The 
error signal propagates backward through the evidence chain, lowering the weight of the sources that 
supported it. It flows back through the agents, reducing the reputation of those that made the mistaken 
claim. Conversely, when an edge is validated repeatedly and crystallizes into a declarative fact, 
reinforcement signals strengthen the sources and agents that contributed. 
 
This is why SON learns. Its housekeeping agents — deduplication, pruning, coalescence — are not just 
janitors sweeping noise away. They are feedback mechanisms, equivalent to the gradient descent steps in 
a neural net, tuning the graph over time. Each failed inference is a training example; each successful 
crystallization is a reinforcement. The z-axis becomes not just a staging ground for uncertain knowledge, 
but a distributed learning system that grows more resilient with every cycle of error and correction. 

 

Confidence 
In SON, confidence is always attached to a relationship, not to the object itself. A user account remains the 
same persistent object regardless of how certain we are about its attributes or behaviors; what varies is the 
confidence we place in the links and assertions surrounding it. Each edge, mapping, or inferred connection 
carries a confidence interval (CI), representing not a single probability but a structured aggregation of 
competing views from diZerent agents. 

Housekeeping agents each compute confidence in their own way. A clustering agent may assign a high score 
because two objects are close in vector space. A temporal-consistency agent may assign a low score 
because the events do not repeat over time. A schema-checking agent may refuse to assign confidence at all 
if required fields are missing. None of these agents has the final word. Instead, their outputs are combined by 
orchestration, which acts as a gating mechanism: it weights their contributions according to the user’s stated 
SLOs and gas budget, privileging some strategies over others depending on context. 

Because SON treats confidence as a dynamic property, it evolves over time. As corroborating evidence 
accumulates, confidence rises; as evidence decays or contradictions appear, confidence falls. This creates a 
natural promotion and demotion cycle. Links that pass repeated tests may crystallize into declarative facts, 
while fragile edges are demoted into speculation or pruned away. The process is not one-way: even a once-
stable edge can be demoted if new evidence undermines it. Confidence in SON is therefore not a declaration 
of certainty but a living measure of how well a claim has withstood adversarial challenge. 

The adversarial interplay among agents is what makes confidence resilient. Some are designed to merge 
aggressively, pulling objects together quickly; others are designed to split cautiously, insisting on 
corroboration before merging. Still others suspend judgment until they see enough evidence across layers. 
Their disagreements keep confidence intervals from collapsing prematurely around a single perspective. Just 
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as GANs produce stronger models by pitting generator against discriminator, SON produces stronger 
knowledge networks by requiring every edge to survive repeated, structured opposition before it can sink into 
the declarative plane. 

In this way, confidence in SON embodies several of the system’s core ideas. It preserves persistence by 
attaching uncertainty only to relationships, never to the underlying objects. It supports autonomy by allowing 
each agent to compute confidence in its own way. It ensures economy by making validation an explicit cost 
governed by gas and SLO contracts. And it achieves adversarial resilience by welcoming disagreement and 
turning it into a mechanism for robustness. 

Reputation 
Where confidence attaches to relationships, reputation attaches to the agents and sources themselves. It is 
SON’s way of remembering not just what was claimed, but who made the claim and how well their past 
claims have held up over time. Reputation transforms confidence from a snapshot into a history: it is a 
measure of reliability earned through repeated validation or lost through repeated error. 

This idea also has roots in machine learning. In adversarial training and mixture-of-experts models, it is not 
enough to ask whether a single prediction is correct; what matters is how a model performs across many 
trials. Experts that consistently contribute useful outputs gain weight, while those that mislead are down-
weighted or ignored. SON applies the same principle, but at the level of knowledge networks. An agent that 
regularly proposes merges which later crystallize into declarative facts gains reputation. An agent whose 
edges are frequently pruned or demoted loses it. This adjustment is continuous and proportional — 
reputation does not rise or fall all at once but shifts gradually, reflecting a long-term track record. 

Reputation is not limited to agents themselves. It also reflects the sources they rely on. Some agents are 
tightly bound to curated databases or trusted feeds, in which case their reputation is closely tied to the 
quality of that source. Others explore more diverse or speculative inputs, and their reputation reflects how 
well they manage that risk. This means agents must learn not only to propose relationships but to choose 
their sources wisely. Over time, they are expected to optimize their source strategies in a goal-seeking way: 
filtering noise, layering corroboration, or balancing exploratory and conservative behaviors. 

This introduces a form of back-propagation for reputation. When an agent’s assertions are pruned or 
demoted, the error signal flows backward, not just reducing the confidence of the edge but recalibrating the 
agent’s sourcing logic. Conversely, when assertions crystallize, reinforcement flows backward, strengthening 
those strategies. In this sense, each agent is always tuning itself, learning to minimize its reputational error 
rate just as a machine-learning model minimizes prediction error. 

Reputation in SON therefore operates as an ongoing risk evaluation function. Agents are rewarded not only for 
being correct but for managing uncertainty responsibly. Orchestration can then weight their contributions 
accordingly: a speculative agent with low reputation may still be listened to for early warnings, but only under 
tight constraints, while a conservative agent with high reputation may be privileged when stability is more 
important than novelty. 

In this way, SON ties reputation directly into its core principles. Persistence is preserved because 
reputational history attaches to stable objects and agents, not ephemeral events. Autonomy is supported 
because each agent is free to select and adapt its sourcing strategies. Economy is enforced because 
reputation influences whether an agent’s work justifies the gas it spends. And adversarial resilience is 
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strengthened because reputation rewards not only consensus but also the capacity to challenge weak or 
misleading claims. 

Evidence 
If confidence measures the strength of a claim and reputation measures the reliability of the claimant, 
evidence is what makes both meaningful. Without evidence, confidence scores would be arbitrary numbers 
and reputation would collapse into mere assertion. In SON, every relationship is backed by an evidence 
chain: a structured record of how the link was proposed, what sources were consulted, what transformations 
were applied, and what corroboration has been observed over time. 

An evidence chain is not a single proof point. It is an accumulation of inputs: a document citation, a database 
record, a clustering similarity score, an external knowledge-base reference. These are not reduced to a scalar 
but preserved in sequence, so that they can be revisited, audited, or challenged. A useful way to think of an 
evidence chain is as a case file. No single page proves the case; what matters is the collection — the witness 
statements, timestamps, exhibits, and corroborating documents that together form a defensible record. 
Evidence in SON plays the same role: a living file that can be extended, challenged, or overturned, but never 
reduced to a single number. 

The adversarial nature of SON extends into evidence as well. Agents can be designed not only to add 
evidence but to probe it — to highlight weak or missing links, to surface contradictions, or to test whether an 
evidence chain is reproducible. Their role is not to silence weak evidence but to ensure it is properly 
weighted. A shallow chain that rests on a single noisy feed will not survive scrutiny, while a deep chain that 
has passed multiple rounds of adversarial testing will stand a strong chance of being crystallized into the 
declarative plane. 

Because evidence is explicit, SON enables auditable learning. When an edge is promoted, the record shows 
which evidence contributed. When an edge is demoted, the error signal flows back through the chain, 
reducing the weight of the contributing sources or methods. This makes SON resilient not just at the edge 
level but at the systemic level: it learns which types of evidence are most reliable, which agents weigh them 
most responsibly, and which patterns deserve to persist. 

Evidence is also what makes SON transparent. Every promotion, demotion, or reputational adjustment can 
be explained in terms of its evidence trail. This ensures reproducibility: the system can re-run a chain “as-of” 
a given point in time to test whether the same conclusion should still hold. It also ensures human 
interpretability: analysts can inspect what evidence was used, how it was weighted, and what corroboration 
tipped the balance. Later in this paper, the SOC MVP will make this concrete: every query to an external 
threat-intelligence feed, every corroborating signal, and every pruning decision is logged as part of an 
evidence chain, so that even the most tentative edge has a traceable history. 

In this way, evidence chains become the backbone of SON’s integrity. They link persistence to provenance, 
autonomy to accountability, and economy to verifiability. They allow SON to admit uncertainty without losing 
coherence, because every claim is as strong — and only as strong — as the evidence that supports it. 

Confidence and Reputation Example 
Taken together, confidence, reputation, and evidence form the backbone of SON’s resilience. Confidence 
expresses the present strength of a claim; reputation reflects the long-term reliability of those who make 
claims; and evidence provides the substrate that makes both measurable and auditable. None stands alone. 
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Confidence without evidence is arbitrary. Reputation without confidence is empty status. Evidence without 
either is just raw material. By weaving them together, SON creates a system that can admit uncertainty, 
reward reliability, and evolve through adversarial testing rather than collapse under disagreement. 

Later in this paper, the Security Operations Center MVP demonstrates these dynamics in practice: a login 
event generates a low-confidence edge, housekeeping agents consult external intelligence at a gas cost, 
corroboration adjusts the edge upward or downward, and evidence chains preserve every step of the 
reasoning. The SOC is just one application, but the principle generalizes. Whether in cybersecurity, finance, 
medicine, or science, SON’s combination of confidence, reputation, and evidence provides a foundation for 
knowledge networks that are persistent, private, and economically accountable — the qualities needed to 
scale from enterprise deployments to a new, global internet of knowledge. 

Confidence, Reputation, and Evidence in a SOC Deployment 
In a Security Operations Center (SOC), SON objects might represent accounts, processes, hosts, 
vulnerabilities, and observed events. Telemetry continually produces relationships: a login attempt links an 
account to a host, a process execution links a binary to a user session, a vulnerability scan links a host to a 
CVE. 
 
Not all of these links are equally certain. A rarely seen process under a privileged account, for example, 
may be suspicious but not yet evidence of compromise. In SON this edge begins with low confidence, 
assigned by initial housekeeping agents. Left unexamined, it may decay into speculation and be pruned. 
 
A validation agent intervenes. At some gas cost, it queries an external DAO of threat intelligence feeds. If 
multiple independent sources flag the binary as malicious, confidence in the edge rises. The evidence 
chain records the query, the DAO’s response, and the agent’s decision. If corroboration persists, the edge 
may eventually crystallize into the declarative layer. The agent’s reputation also rises, as its choice to 
spend gas proved justified. 
 
But if the DAO’s claim is later contradicted, the edge is demoted or pruned, and a corrective signal flows 
backward. Confidence falls, and the agent’s reputation declines. The evidence chain still records every 
step, ensuring the system remains transparent and auditable. 
 
This illustrates SON’s cycle in practice. Confidence reflects the momentary strength of an edge, reputation 
tracks the reliability of agents and sources over time, and evidence ties both together in a transparent 
record. The SOC is a concrete MVP that makes these ideas visible in one domain, and the same cycle 
applies globally: in finance, medicine, or science, wherever knowledge must evolve through uncertainty 
under rules of persistence, privacy, and economy. 

Synthesis 
Confidence, reputation, and evidence form the epistemic backbone of SON, but their significance lies in how 
they bind objects, z-axis layers, and agents into a coherent, searchable knowledge fabric. Each z-axis layer 
can hold competing or even contradictory perspectives — declarative facts, provisional inferences, or 
contextual narratives — yet the system remains navigable because every relationship is weighted, every claim 
is attributed, and every edge carries an evidence chain. 

Agents play a central role in this balancing act. Explorers, Conservatives, Pruners, and Orchestrators 
generate, challenge, and refine mappings across layers, while Aligners and Curators maintain alias 
relationships and filter which perspectives are most relevant to a query. Their outputs are not collapsed into a 
single “truth” but aggregated through weighting models that preserve diversity while producing a usable 
signal. This ensures that when the system is queried, it can deliver a deterministic slice of knowledge — a 
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view that reflects the best available confidence intervals and reputational scores at that moment, without 
discarding the wider ecosystem of competing interpretations. 

The integrity of the model is protected by this weighting structure. Weak or noisy claims cannot overwhelm 
stronger ones because confidence rises only with repeated corroboration, reputation accumulates only 
through demonstrated reliability, and evidence chains remain open to audit. In this way, SON transforms what 
might otherwise be an unstructured web of z-axis layers into a structured, queryable substrate, where every 
answer can be traced back through agents, evidence, and provenance. 

Yet protecting integrity requires more than epistemic rigor. Persistence and provenance mean little if sensitive 
data can be exfiltrated once discovered. For this reason, SON extends the same adversarial philosophy into 
access control. Watchtower sub-objects embed privacy and policy enforcement at the point of consumption, 
ensuring that even when metadata and confidence scores are discoverable, the underlying payload is only 
released under explicit, auditable contracts. In this way, confidence, reputation, and evidence provide the 
rigor for trust, while Watchtower ensures that this trust can be exercised without compromising sovereignty or 
security.  
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Access Control 
In a distributed knowledge network, access control is not a secondary feature but a first principle. Without it, 
participants would face a false choice: either strip sensitive data before publishing, which reduces its value, 
or withhold it entirely, which reduces the network. SON solves this by making persistence and access 
independent. Objects can be freely published in their complete form, but the sensitive portions remain 
sealed until the moment of consumption, when policy is applied. In this model, publication is safe by default, 
and every retrieval is conditioned on explicit rules. The object is always visible as an anchor in the graph, but 
its protected payload is only revealed under the terms defined by its publisher. 

A helpful analogy is to think of SON objects as checks in a banking system. A check always contains public 
information — the account holder’s name, the issuing bank, the account number, the date, and the amount. 
This information must be visible so the check can be routed and processed, just as SON objects always 
expose metadata so they can be linked and discovered. But handing someone a check does not give them 
access to your entire account. The only thing they can do is request a specific transaction, and even that 
transaction only clears if the bank enforces its policy: verifying your signature, confirming suZicient funds, 
and checking for fraud. In this analogy, the bank’s policy system is the Policy Decision Point (PDP), the teller 
or clearinghouse is the Policy Enforcement Point (PEP), and the record of the cleared check is attribution. 
Attestation is equally important: you must know you are dealing with a legitimate bank agent and not a 
counterfeit, just as an agent in SON must be able to verify that a Watchtower service is a trustworthy steward 
of the data it enforces. 

This framing highlights why access control is central to SON’s core objectives. Persistence is guaranteed 
because objects never need to be rewritten or withdrawn; they can circulate safely even if they contain 
sensitive payloads. Autonomy is preserved because each participant defines its own policies. Privacy is 
protected because sensitive data remains sealed unless the request is authorized. Economy is enforced 
because every access can carry an explicit cost, ensuring that retrievals are accountable. And global scale is 
possible because diZerent organizations can share the same graph while enforcing their own rules at the 
moment of consumption. 

Access Control in Practice 
Access control has long been central to enterprise security, and SON builds on concepts that many 
readers will already know. 
 
Role-Based Access Control (RBAC): Permissions are tied to roles, and users gain access by assuming 
those roles. An administrator can reset passwords, an analyst can review events, and an auditor can 
inspect logs. RBAC is straightforward and widely used, but it assumes that roles alone capture all the 
nuance of access decisions. 
 
Attribute-Based Access Control (ABAC): Extends RBAC by adding context. In ABAC, policies may 
consider department, data sensitivity, location, device security, time of day, or declared purpose. For 
example, analysts may view logs only during business hours from managed devices, or researchers may 
access de-identified data but not full records. ABAC allows more granular policies, but requires more 
sophisticated enforcement. 
 
Policy Decision Point (PDP) and Policy Enforcement Point (PEP): Together, these define how RBAC and 
ABAC are applied. The PDP evaluates policy — does the requester meet the required roles and attributes? 
The PEP enforces the result — allowing, denying, or filtering the request. In an enterprise, the PDP might be 
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an identity provider, while the PEP is an application or gateway. The separation makes rules auditable and 
enforcement reliable. 
 
Attribution and Attestation: Modern access control extends beyond the requester to the enforcement 
service itself. Attribution means every request and decision is logged: who asked, under what conditions, 
and what policy was applied. Attestation means the enforcement point itself must prove it is operating in a 
trustworthy environment, such as a verified runtime or secure enclave. In SON, both requester and 
Watchtower must meet this bar: the requester proves it can honor obligations, and the Watchtower proves 
it is a legitimate steward of the data. 

SON implements these concepts through the mechanism of Watchtower. A Watchtower is a sub-object 
embedded within the parent object that declares how its sensitive payload is governed. It identifies the 
service that will act as the PEP and carries metadata for a PDP to evaluate whether the requester satisfies 
policy. Before access is granted, the requester must make a meaningful assertion of trust — a signed proof of 
identity, a device attestation, or a purpose-bound token — while the Watchtower must in turn provide 
attestation of its own integrity. Only when both sides can prove themselves does the transaction proceed, 
with attribution ensuring the entire exchange is recorded. 

Because enforcement happens at consumption, not persistence, SON makes it safe to publish objects 
widely. Objects can circulate through the network, link to others, and serve as features in reasoning models 
without exposing their sensitive contents. The payload remains sealed until the Watchtower permits its 
release, under conditions defined by the publisher. 

Every Watchtower operation also runs under SON’s gas and SLO contract model. Just as housekeeping 
agents must decide whether a validation is worth the gas it consumes, requesters must decide whether 
access is worth the cost. Watchtowers may charge for decryption, redaction, watermarking, or caching, 
aligning privacy protections with explicit economic incentives. This ties access control directly into SON’s 
DAO-style governance: rights, obligations, costs, attribution, and attestation are enforced together as part of 
the protocol. 

By embedding access control in this way, SON makes privacy and accountability intrinsic to the object 
model. Objects remain persistent and linkable, participants retain autonomy over their data, requesters pay 
for what they consume, and both sides must prove they are trustworthy. Watchtower is therefore not an 
afterthought but a protocol extension of SON itself — the mechanism that makes it possible to combine 
persistence, privacy, and economy in a global network. 

Visual Concept: Object as a Check in a Banking System 
1. The Object (Check Representation) 

• Draw a check as a rectangle. 
• Public metadata fields clearly visible: account holder, bank name, account number, date, 

amount. 
• Caption: “Object metadata: always visible for routing and linking.” 

2. The Protected Payload (Account Information) 
• Behind the check, a locked vault icon representing the actual account balance, 

transaction history, etc. 
• Caption: “Payload: sealed, not revealed by the check itself.” 

3. Policy Decision Point (PDP) 
 • Inside the bank’s back-oZice systems, show a box labeled PDP. 
 • Arrows from the check → PDP: “Verify funds, validate signature, check fraud rules.” 
4. Policy Enforcement Point (PEP) 

• At the teller’s desk (or clearinghouse), show a person/icon labeled PEP. 
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• Arrow from PDP → PEP: “Decision: allow or deny transaction.” 
• Arrow from PEP → vault: “If allowed, release only this transaction, not the full account.” 

5. Attribution 
• Ledger book or stamped receipt next to the teller. 
• Caption: “Attribution: who issued the check, who processed it, when and how.” 

6. Attestation 
• Bank seal or holographic badge above the teller and bank system. 
• Caption: “Attestation: the bank itself proves it is legitimate before handling the request.” 

7. Economy (Gas + SLO) 
• Small coin stack icon next to the ledger. 
• Caption: “Every transaction has cost and settlement rules — economic accountability.” 

Overall Caption: 
“SON objects behave like checks: metadata is public and routable, payloads remain sealed. Access 
control is enforced at consumption, not persistence, with PDP/PEP separation, attribution, attestation, and 
economic settlement built into the protocol.” 

Access Control via Watchtower 
To see how SON enforces access at the point of consumption, consider how an agent requests a protected 
object. The process resembles clearing a check: the document can circulate freely, its metadata visible to all, 
but only the issuing bank (the Watchtower) decides whether to honor the transaction and under what terms. 

1. First Contact — Discovering the Gate 

An agent encounters an unfamiliar object in the graph. Its public metadata is visible — schema, provenance, 
identifiers — but a portion of the payload is flagged as protected. The object also carries a Watchtower sub-
object, declaring that access must be mediated. 

2. Local Policy — Deciding Whom to Trust 

Before proceeding, the agent checks its own trust rules. Just as a bank customer may insist on using a 
preferred clearinghouse, the agent may choose a pinned Watchtower it already trusts, rather than the one 
suggested by the object. Autonomy is preserved: the requester, not the object, controls how enforcement is 
routed. 

3. Capability Read-In — Understanding Conditions 

The Watchtower advertises its policy without revealing secrets. The agent learns what will be required — role 
membership, contextual attributes, obligations such as redaction or caching rules. This is equivalent to 
reading the terms of a transaction before deciding to endorse it. 

4. Agent Assertion — Proving Intent and Identity 

The agent prepares a signed assertion: who it is, what policy it intends to satisfy, and what capabilities it has 
to enforce obligations. This may include device attestation or proof of runtime environment. In banking terms, 
this is the signature on the check: a declaration that the requester is who they claim to be and will honor the 
obligations of the transaction. 

5. Watchtower Attestation — Proving the Enforcer 

Before enforcement begins, the Watchtower itself must prove it is genuine. It provides attestation of its 
integrity — for example, a cryptographic proof that it is running inside a verified enclave or a signed statement 
from a trusted root. This step ensures the agent is not handing sensitive data to a counterfeit service. 
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6. Server Challenge — Making the Decision 

The Watchtower Server acts as the Policy Enforcement Point (PEP), but only after consulting its internal Policy 
Decision Point (PDP). It checks the agent’s assertion, the policy rules, and any contextual obligations. If 
conditions are not met, the request is cleanly denied. 

7. Economics — Quoting the Cost 

If policy alignment is possible, the Watchtower proposes a service class and cost. This is SON’s gas and SLO 
contract: just as processing a check incurs fees, invoking a Watchtower consumes resources. The agent 
decides whether to proceed, and if so, escrows the agreed gas through a DAO contract. 

8. Dual Channels — Execution and Delivery 

Two channels now operate in parallel. Between the agent and the Watchtower Server, decryption and 
obligation enforcement occur under audit. Separately, the filtered result is returned to the requester. Tokens 
and nonces bind the channels together, ensuring integrity. 

9. Attribution — Recording the Transaction 

Every step is logged: who requested, what policy was applied, what obligations were enforced, how much gas 
was spent. The audit trail is the stamped ledger of the transaction, ensuring attribution for both requester and 
Watchtower. 

10. Settlement — Closing the Loop 

When the transaction completes, the DAO reconciles the gas ledger. Unused balance returns to the 
requester. The result is a clean settlement: a single transaction executed under policy, attributed to both 
parties, and finalized economically. 

In this example, the object remained persistent and visible throughout. At no point did it need to be rewritten, 
stripped, or withheld. Privacy was preserved through Watchtower, autonomy through pinned trust choices, 
accountability through attribution, trust through attestation, and economy through gas contracts. Together, 
these steps illustrate how access control in SON makes it possible to circulate knowledge objects freely 
while ensuring that every consumption is conditional, auditable, and enforceable. 

Visual Concept: Watchtower Storyboard 
Here’s a diagram concept that matches the narrative and visual language we’ve been using, but presented 
as a single transaction storyboard rather than a checklist. Imagine a left-to-right sequence diagram with 
four swimlanes: Requesting Agent, Watchtower Agent (optional, if the requester routes through a pinned 
intermediary), Watchtower Server, and DAO/Gas Ledger. The object itself is drawn above the lanes as a 
“check” rectangle with its public metadata visible and a locked vault icon behind it to suggest the sealed 
payload; an arrow from the Requesting Agent to the object indicates discovery, not access. 
 
The first pane shows “discovery and routing”: the Requesting Agent reads the object’s metadata and 
notices the embedded Watchtower sub-object. A short control arrow drops into the Requesting Agent lane 
labeled “trust policy,” then fans rightward toward either the object-advertised Watchtower Agent or a 
pinned, local Watchtower Agent the requester prefers. This makes the requester’s autonomy explicit 
without altering the object. 
 
The second pane depicts “capability read-in and attestation handshake.” The chosen Watchtower Agent 
fetches the Watchtower policy descriptor from the object and relays it to the Requesting Agent; above the 
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Watchtower Server lane, a badge icon and caption “server attestation” indicate a signed, verifiable proof of 
runtime integrity. A paired arrow from the Requesting Agent back to the Watchtower Agent carries the 
requester’s signed assertion bundle (identity, purpose, device/runtime attestation, declared obligations it 
can honor). The visual makes the symmetry clear: both sides prove themselves before any secret moves. 
 
The third pane shows “PDP decision and PEP binding” as a tight loop inside the Watchtower Server lane. 
The policy engine (PDP) evaluates roles and attributes, time and location constraints, purpose binding, and 
any obligation requirements. A small lock icon sits at the PEP boundary where decryption would occur, 
visually separated from the PDP box to emphasize decision versus enforcement. If the decision is negative, 
a clean red “deny” message returns left; if positive, the flow continues to quoting. 
 
The fourth pane renders “economics and SLO” as a brief negotiation: a ticket-shaped bubble from the 
Watchtower Server labeled with service class, latency ceiling, and price. The Requesting Agent either 
declines (branch back to idle) or accepts by emitting a signed “commit” that travels to the DAO/Gas Ledger 
lane. The ledger records an escrow event keyed to the object ID, policy nonce, server identity, and service 
class; a capability token with nonce bindings returns along the same path. 
 
The fifth pane is “dual-channel execution.” A lower channel connects the Watchtower Agent and 
Watchtower Server for enforcement: decrypt inside the server boundary, apply obligations (masking, 
redaction, watermarking, caching rules), and stream a filtered result outward. A distinct upper channel 
returns the result to the Requesting Agent. Nonces on both channels are shown as small tags so the reader 
sees that neither stream can be replayed or spliced. The vault icon stays inside the server boundary to 
make it clear that long-lived keys never leave enforcement. 
 
The sixth pane emphasizes “attribution and settlement.” A ledger book icon sits partially over all lanes; thin 
audit lines descend from each message to the ledger, capturing who requested, which policy version and 
attestation were used, which obligations were enforced, what SLO was met or missed, and how much gas 
was consumed. When streaming completes, the Watchtower Server posts actual meter usage to the DAO; 
the ledger settles against the escrow and returns any unspent balance to the requester. The diagram ends 
with the object still intact and unchanged above the lanes, its public metadata as visible as before, 
underscoring that persistence is independent of consumption. 
 
If you want a compact caption for the figure: “Object discovery is free; access is a contract. Both parties 
attest, policy decides, enforcement decrypts, attribution records, and the DAO settles—without ever 
rewriting or exposing the object itself.” 

Synthesis 
Access control in SON is not a bolt-on feature but a structural guarantee. By embedding Watchtower as a 
sub-object within each knowledge object, SON ensures that persistence and privacy coexist: objects never 
need to be stripped, duplicated, or withdrawn in order to circulate safely. Metadata remains visible for routing 
and discovery, while sensitive payloads are only revealed under explicit contractual conditions. 

 

This design achieves several outcomes at once: 

• Persistence with Safety: Objects can remain durable and discoverable without exposing sensitive 
content. 

• Autonomy of Policy: Each participant defines and enforces its own RBAC/ABAC rules without relying on 
central intermediaries. 
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• Accountability: Every access request leaves an auditable trail, binding requester, Watchtower, and DAO 
settlement together. 

• Economic Alignment: Privacy protections are not simply obligations; they are tied to explicit costs 
through gas and service-level contracts. 

The result is that SON can support open knowledge exchange without sacrificing sovereignty. Objects remain 
interoperable across domains, but the release of sensitive content is always conditional, auditable, and 
economically accountable. Watchtower thus extends SON’s philosophy into the domain of privacy and 
governance: persistence without exposure, autonomy without isolation, and circulation without loss of 
control. 
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DAO and Gas 
SON 2.0 treats knowledge as persistent and auditable, but persistence alone does not guarantee 
sustainability. Every action in the network—deduplication, pruning, inference, decryption, or external 
lookup—consumes resources. Without constraint, agents could burn cycles endlessly, chasing low-value 
correlations or flooding external services with queries. To avoid this, SON makes every operation subject to 
an economic contract: no work is done unless it is worth paying for. Gas metering is the unit of this contract, 
ensuring that reasoning and access are not “free-floating” but explicitly tied to budget and accountability. 

At its simplest, gas operates locally. A tenant defines a budget, and their agents consume from that budget as 
they run housekeeping or inference tasks. This guarantees fairness among internal strategies and prevents 
runaway consumption. But SON is not confined to the local boundary. Agents frequently need to reach 
outward—to query a search engine, a remote database, or a federated DAO of intelligence feeds. In these 
cases, edge agents in foreign networks act as service providers, oZering to perform work for a fee. The local 
orchestrator decides whether to spend budget locally or remotely, weighing error feedback, prior 
performance, and cost. 

For the user, this complexity is hidden. They set an operating agreement and a budget; the orchestrator 
enforces it. If an external DAO has historically improved confidence with low error and reasonable cost, it will 
be favored. If it burns gas without producing value, its reputation declines and it is invoked less often. Over 
time, this creates a feedback loop: agents learn not only what knowledge is valuable, but which providers are 
eZicient at supplying it. 

To prevent exhaustion, SON also introduces the concept of a circuit breaker. When a budget is consumed too 
quickly, or when marginal utility drops below threshold, the breaker trips. Certain classes of agents are 
paused, exploratory merges are throttled, or external queries are suspended until conditions stabilize. In this 
way, the economic layer provides not only fairness, but also resilience—ensuring that the system degrades 
gracefully under load rather than collapsing. 

Gas and DAO governance thus serve multiple functions at once: 
Accountability: every action has a recorded cost and outcome. 
Autonomy: tenants control their budgets and operating policies. 
Federation: external work is purchased under explicit contract, not assumed. 
Resilience: circuit breakers ensure bounded consumption and protect against runaway dynamics. 
Learning: error feedback and gas eZiciency propagate backward, refining how orchestrators allocate spend. 

In this framing, SON turns resource consumption from a hidden liability into a visible signal. Budgets, 
contracts, and circuit breakers make the system economically aware, allowing persistence, provenance, and 
privacy to coexist with sustainability. 

Budgets alone are not enough. To allocate gas wisely, SON agents must continuously evaluate whether the 
work they performed was worth the cost. This requires a feedback loop: each action is measured for its 
contribution to the network, compared to what it cost, and the diZerence is propagated backward into the 
orchestrator’s allocation model. 

Formally, when an executor (local agent or remote DAO) performs a task, the system records: 

Outcome delta — how much did this action improve the network? 
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• ∆CI: change in the confidence interval of the target relationship. 
• ∆Q: change in a quality metric (e.g., reduction in false positives). 
• ∆F: improvement in freshness or staleness decay. 

Cost observables — gas consumed (g), latency (ℓ), and any external fees. 

Utility score (benefit – cost) 

r! = 𝛼∆CI	 + 	β∆Q	 + 	γ∆F	-	δℓ0!	-	εg3 ! 

This expresses the net value of an action.  The (α…ε) weights set by policy, and the tildes (ℓ0!, g3 !) indicate 
normalized values.  

Cost-eZiciency (marginal utility per unit gas) 

CE! =
𝛼∆CI	 + 	β∆Q	 + 	γ∆F

g! + 𝜂
 

where 𝜂	𝑖𝑠	𝑎	𝑠𝑚𝑎𝑙𝑙	𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑧𝑒𝑟	𝑡𝑜	𝑎𝑣𝑜𝑖𝑑	𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛	𝑏𝑦	𝑧𝑒𝑟𝑜. 

Prediction error for feedback 

e! = rH(x!, i!)	-	r! 

The orchestrator compares predicted reward rH with realized reward r!. The error e! is propagated backward to 
adjust reputations and eZiciency scores. 

Circuit breaker conditions 

1. Budget floor: 
b! ≤ b"#$ 

if remaining budget drops below a floor, exploratory tasks are halted. 
2. Utility collapse: 

MU! < 𝜏	for	m	consecutive	steps 
If marginal utility (MU) falls below threshold 𝜏 repeatedly, agents are paused. 

3. Diminishing returns: 
∆MU
∆t
]]]]]]

< 𝜌	⋀	ġ ↑ 

If eZiciency is declining while spend rate rises, orchestration throttles exploration. 

Together, these mechanisms ensure that SON not only measures the outcome of work, but also penalizes 
wasted gas and rewards eZicient, high-value contributions. The result is a self-correcting economy: gas 
becomes both the fuel and the feedback signal for orchestrating knowledge evolution. 

What a DAO Means in SON 
In the context of SON, a DAO (Decentralized Autonomous Organization) is not shorthand for Ethereum 
contracts or token-governed treasuries. It is better understood as a protocol-driven cooperative: a ruleset 
that agents agree to follow when they exchange knowledge, perform validation, or provide services. 

The key insight is that SON does not mandate which DAO framework must be used. Instead, SON assumes 
that agents can participate in any governance protocol they understand. If one consortium uses Hyperledger 
smart contracts, another uses Tendermint voting, and a third uses a lightweight JSON-schema reputation 
ledger, SON agents can interact with each—so long as the rules are transparent and enforceable. 
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DAO in SON therefore has three roles: 

Contract Layer: ensures that when agents exchange work (validation, external queries, decryption, etc.), 
there is an enforceable record of obligations, attribution, and settlement. 

Governance Layer: defines how participants agree on thresholds: e.g., what counts as suZicient evidence, 
what fees apply, what conditions must be met for publication to a declarative layer. 

Reputation Layer: maintains memory of performance: how much confidence a provider actually improved, 
whether they delivered within SLOs, and whether prior obligations were honored. 

Importantly, SON does not require a specific DAO implementation. A DAO here is illustrative: it shows how 
incentives, costs, and accountability can be made explicit in an open knowledge economy. Any protocol that 
provides contract, governance, and reputation semantics can play the role of DAO. 

This flexibility keeps SON from being locked into the trajectory of blockchain ecosystems while still adopting 
their most useful concepts: transparency, auditability, and decentralized governance. In this sense, DAO is 
not a dependency of SON but a pattern—a way to describe how cooperative rulesets can emerge around 
shared knowledge exchange. 

Local vs. Global Scope of Gas 
Gas in SON begins as a local budget. Each tenant defines how much they are willing to spend, and their 
housekeeping and inference agents consume from this pool. This ensures that pruning, deduplication, and 
evidence validation are disciplined, fair, and auditable inside the firewall. Circuit breakers prevent runaway 
use, and error feedback ensures that gas is not wasted on agents that deliver little value. 

But SON recognizes that knowledge rarely lives in isolation. A local repository may not contain the most 
recent indicators of compromise, or an enterprise analyst may need a cross-check against a global research 
feed. In these cases, SON extends the scope of gas outward. 

When an agent needs to operate beyond its local network, it can call on edge agents embedded in remote 
domains. These act as service providers, oZering to perform work—such as querying an external database, 
running a search, or validating against a third-party evidence pool—in exchange for gas. The orchestrator 
weighs the request: 

• Does local computation suZice, or does the query require external reach? 
• Has this remote provider historically delivered useful improvements to confidence and quality? 
• Is the quoted gas fee within budget, and does the marginal utility justify the spend? 

The decision is automatic. From the user’s perspective, there is no need to distinguish between local spend 
and external spend. The orchestrator applies the same budget, error feedback, and circuit breaker logic 
across both contexts, arbitrating how best to sustain the network. 

This is where DAOs enter. DAO governance defines the contract space when external work is invoked. A DAO 
may require that: 

• External providers publish evidence thresholds for their claims. 
• Consumers agree to attribution and attestation terms. 
• Gas settlement occurs under a known protocol (on-chain, oZ-chain ledger, or federated log). 
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In this way, gas stays tenant-controlled, but DAOs provide the open rulebook for how external service calls 
are priced, validated, and recorded. Crucially, SON does not prescribe which DAO or ledger is used. Any 
open-source framework that encodes rules, reputation, and settlement can function as the coordinating 
fabric. 

The eZect is seamless federation. Locally, gas disciplines internal housekeeping. Globally, DAOs extend that 
discipline into cross-domain knowledge exchange without requiring central authority or trust-by-default. The 
orchestrator remains the decision-maker, but it makes those decisions against a backdrop of known rules, 
error history, and explicit economic contracts. 

DAO Governance & Risks 
If gas is the unit of accountability in SON, DAOs are the rules of engagement. A DAO in this context is not a 
single blockchain or token system, but an open governance protocol that agents can join and obey. Its role is 
to ensure that when work is exchanged across domains, the terms are transparent, obligations are enforced, 
and reputations are remembered. 

Core Governance Functions 
A SON-compatible DAO provides three foundational capabilities: 

1. Contract Enforcement 
• Defines the settlement rules for gas: how much an operation costs, what class of service it 

belongs to, and what happens if the provider fails to deliver. 
• May require escrow, service-class tokens, or signed attestation that results were provided. 

2. Policy & Thresholds 
• Sets conditions for when results are eligible to be promoted (e.g., minimum evidence depth, 

corroboration from multiple independent feeds). 
• Defines SLO classes — latency ceilings, freshness expectations, minimum confidence gain. 

3. Reputation Management 
• Tracks how often providers met their declared thresholds and SLOs. 
• Decays reputation for errors, delays, or low-value output. 
• Rewards eZiciency: providers that improve confidence at low cost are weighted more heavily 

in future selections. 

Risks in DAO Operation 
While DAOs introduce transparency, they also introduce risks: 

Cartelization 
A cluster of providers could collude to set high gas prices or suppress dissenting evidence. 
Mitigation: diversity quorum requirements (multiple independent providers must corroborate a claim), and 
transparent pricing logs. 

Gaming the Reputation System 
Providers could spam low-value evidence to appear active. 
Mitigation: back-propagated error scoring — reputations rise only when confidence actually improves, not 
when volume increases. 
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Capture or Policy Drift 
A DAO might drift from evidence-first principles to ideological or commercial bias. 
Mitigation: multi-DAO interoperability. Agents can always switch allegiance to another DAO with clearer 
rules, ensuring SON is not dependent on any one governance structure. 

Denial of Wallet (DoW) 
Excessive fees or runaway requests could drain a budget prematurely. 
Mitigation: circuit breakers at the orchestrator level; agents refuse external calls once marginal utility drops 
below threshold. 

SON’s Stance on DAO Dependence 
SON deliberately does not mandate a single DAO implementation. Agents can interoperate with any 
governance framework that provides contract enforcement, policy rules, and reputational memory. This 
ensures that SON is protocol-agnostic: DAOs are illustrative, not prescriptive. They demonstrate how open-
source economies for knowledge exchange can function, but they are not required for SON to operate in 
closed or private deployments. 

Benefits & Illustrative Scenario 
The combination of gas metering and DAO governance provides SON with a disciplined, incentive-aligned 
framework for both local reasoning and federated exchange. 

Benefits in Practice 

Bounded Resource Use: Gas ensures that agents cannot burn infinite compute. Circuit breakers throttle 
runaway behavior, making the system resilient under stress. 

Transparent Accountability: Every external call is settled under contract, with gas spent, outcomes logged, 
and provenance preserved. 

Adaptive EWiciency: Error feedback back-propagates eZiciency: providers that consistently deliver value rise 
in reputation, while noisy or ineZicient ones decline. 

Federated Interoperability: DAOs give multiple organizations a way to collaborate without requiring central 
control or trust-by-default. Rulesets are explicit, reputations portable. 

Protocol Agnosticism: SON does not prescribe how a DAO must be implemented. Any open-source 
framework that encodes contracts, policies, and reputation can serve, making SON deployable in enterprise, 
national, or public contexts. 

Example: SOC MVP Workflow 
Consider a Security Operations Center (SOC) using SON 2.0 as its reasoning substrate. 

Local Event Detection 

• A suspicious login attempt links a user account to a privileged host. 
• The local orchestrator assigns low confidence to the edge (possible false positive). 

Gas-Scoped Exploration 

• A validation agent requests external corroboration from a threat intelligence DAO. 
• The orchestrator weighs cost and past performance: 
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• Local history: this DAO has improved edge confidence 70% of the time. 
• Quoted cost: 3 gas units for a low-latency response. 
• Circuit breaker check: within budget; marginal utility forecast is positive. 

DAO-Managed Transaction 

• Request sent under DAO rules: minimum two independent corroborations required. 
• DAO provider queries multiple feeds, responds within SLA. 
• Orchestrator records gas spend, evidence chain, and reputational update. 

Outcome & Feedback 

• Confidence in the login anomaly rises; edge crystallizes into the declarative layer. 
• DAO provider’s reputation increases proportionally. 
• If the evidence had proven weak or contradictory, the confidence edge would be demoted and the DAO 

provider’s score penalized. 

User Transparency 

• Analyst sees: “Confidence raised from 0.2 → 0.8 due to corroboration from external DAO feeds (providers 
A, B). Total cost: 3 gas units.” 

• No need to know whether the spend was local or remote — only that the orchestrator respected budget 
and policy. 

In this way, SON transforms resource consumption into a measurable, auditable signal. Gas enforces 
discipline locally. DAOs provide contract and reputation when knowledge flows across domains. Together 
they make SON economically aware: every inference, validation, or decryption carries an explicit cost, every 
contribution is accountable, and every outcome feeds back into the system’s long-term eZiciency. 

Synthesis 
DAO and gas together provide SON with an economic model for reasoning, not a cryptocurrency substrate. 
Unlike Ethereum or token-based ecosystems, SON does not mandate any specific ledger, coin, or consensus 
framework. Instead, gas is a local accounting mechanism: a way of measuring the cost of computation, 
validation, or access in a form that can be compared against the value delivered. Each agent or tenant is free 
to define how it implements its own cost model internally — whether through simple counters, credit 
allocations, or more sophisticated metering. What matters is not the currency but the contract: that every 
action consumes a budget, produces an outcome, and can be audited. 

This design decouples the financial model of agents from the knowledge framework itself. Knowledge 
objects, z-axis layers, and evidence chains persist independently of any economic implementation. Gas 
exists at the orchestration layer as a discipline mechanism, not as a dependency. Local models can remain 
lightweight while still interoperating with external DAOs, so long as they respect the same principles of 
attribution, settlement, and reputation when consuming outside resources. In this way, SON achieves parity: 
an agent that spends internally is held to the same standards when it queries external services. 

The eZect is that DAO and gas turn reasoning into a bounded, contract-based process. Computation 
becomes accountable, sustainability is enforced by budget, and external collaboration is governed without 
requiring central control. By keeping economics modular and protocol-agnostic, SON ensures that 
persistence, privacy, and provenance can scale globally without being tied to any one financial system. 
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DAO and gas therefore extend SON’s philosophy into economics: every operation is accountable, but no 
single economic model is imposed. This makes SON not only technically resilient but also economically 
plural, capable of supporting diverse implementations while preserving a common standard of trust. 

With accountability established at the economic layer, the next challenge is resilience: how SON agents 
disagree, balance, and stabilize under adversarial dynamics.  
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Adversarial Agents & Balancing Algorithms 
In most traditional knowledge systems, disagreement is treated as a failure: conflicting inputs are flagged as 
errors to be reconciled or discarded. SON takes the opposite stance. In SON, disagreement is a design 
feature. Agents are built to compete, contradict, and challenge one another because resilience emerges not 
from harmony but from tension. 

This principle has strong analogies in both machine learning and biology: 

GANs (Generative Adversarial Networks): a generator proposes candidates while a discriminator rejects 
weak ones. Each improves through opposition. SON applies the same principle at the knowledge-network 
level: exploratory agents propose links, conservative agents resist them, pruning agents cut dead edges. 
Robustness arises from their contest. 

Immune Systems: antibodies proliferate aggressively to attack possible threats, but regulatory mechanisms 
suppress overreaction. The system survives not because every antibody is correct, but because a balance of 
overreaction and dampening yields resilience. SON’s exploratory and conservative agents mirror this duality. 

Power Grids: electricity supply and demand are constantly fluctuating; grid stability comes from balancing 
generators and loads, not eliminating variance. Likewise, SON achieves stability by managing the push and 
pull of agents proposing, validating, and pruning edges in the graph. 

The purpose of this adversarial design is not to eliminate error but to turn error into feedback. Each wrong 
merge, false positive, or redundant edge is a training signal. When an exploratory agent overreaches, its 
reputation drops. When a conservative agent blocks a claim that later proves valid, it also loses standing. 
Over time, the system converges not toward a single “truth engine,” but toward a balanced ecosystem of 
strategies, each rewarded for its unique contribution to stability. 

In this way, SON transforms adversarial tension into a source of strength. Just as GANs became more 
powerful through opposition, and immune systems thrive by balancing aggression and suppression, SON 
grows more trustworthy by allowing agents to fight for their views—within the boundaries of budgets, circuit 
breakers, and orchestrated governance. 

Why Z-Axis Layers Do Not Require Reconciliation 
A central design principle of SON is that z-axis layers do not need to be reconciled into a single global view. 
Instead, reconciliation is treated as a local and provisional process, carried out only when it improves the 
eZectiveness of queries. 

Consider an example: a local knowledge repository contains an object representing a person. A foreign z-axis 
layer, maintained by another organization or dataset, contains an object that appears to represent the same 
individual. The task for the local system is not to merge or overwrite either object but to determine, through its 
agents, the confidence interval (CI) that the two objects correspond. 

If the confidence interval surpasses a threshold, the system may create a local alias mapping — a pointer 
that links the local object to the foreign object with an associated confidence score. This mapping is entirely 
local. It does not require changes to the foreign layer, nor does it obligate the foreign system to acknowledge 
or reciprocate the relationship. The local alias functions as a translation key: when a query is made against 
the foreign z-axis layer, the alias provides a way to retrieve information relevant to the local object without 
altering the foreign schema or ontology. 
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This approach underscores why SON does not attempt to consolidate all z-axis layers into a universal graph. 
There will always be more layers than any system can fully consume or unify. The role of housekeeping is not 
to “boil the ocean,” but to maintain enough local alias mappings to make queries eZective under the 
constraints of gas budgets, confidence intervals, and service-level objectives. 

In this model, consolidation of z-axis layers is temporal and contextual — performed only in the scope of a 
query and only to the extent that it improves reasoning or retrieval. Over the long term, layers remain 
sovereign and unmodified, while local agents manage the provisional mappings that make federated 
knowledge usable. 

Example Classes of Agents and Their Precedents 
SON does not prescribe a fixed taxonomy of agents. Instead, it provides a protocol within which agents can 
operate under budget constraints, accumulate or lose reputation, and interact adversarially to improve 
confidence in knowledge objects and relationships. The classes described below are illustrative, not 
exhaustive, and are grounded in precedents from machine learning and distributed systems research. Their 
purpose is to demonstrate how familiar adversarial and ensemble mechanisms manifest in the context of 
persistent, multi-layer knowledge graphs. 

Explorers 
Explorers correspond to generative components in adversarial frameworks. In a Generative Adversarial 
Network (GAN), the generator’s role is to propose synthetic samples that may or may not match the target 
distribution. Similarly, Explorer agents propose new mappings, merges, or hypotheses that connect objects 
across z-axis layers. They are biased toward recall, preferring to risk false positives rather than miss potential 
patterns. As in GAN training, their value lies not in their accuracy alone but in their ability to surface 
possibilities that can be tested by other agent classes. 

Conservatives 
Conservatives mirror the role of discriminators in GANs or critics in actor–critic reinforcement learning. Their 
function is to evaluate proposed mappings and edges against schema constraints, provenance requirements, 
or corroborating evidence. By design, they are biased toward precision: they prevent premature crystallization 
of weak or noisy claims. In practice, they enforce the quality thresholds that Explorers must overcome, just as 
discriminators force generators to improve in adversarial training. 

Pruners 
Pruners perform the equivalent of negative feedback mechanisms in adaptive systems. They remove low-
confidence or contradictory edges, collapse redundant nodes into canonical anchors, and enforce decay on 
stale mappings. Their role is comparable to error correction in mixture-of-experts (MoE) ensembles, where 
experts that provide consistently low-value outputs are down-weighted or removed. In the SON setting, 
Pruners ensure that accumulated noise does not overwhelm useful signal, allowing Explorers and 
Conservatives to focus on live hypotheses rather than outdated clutter. 

Orchestrators 

Orchestrators are analogous to the gating functions in Mixture-of-Experts models. In MoE architectures, a 
gating network selects which experts to consult for a given input, balancing eZiciency with accuracy. SON 
Orchestrators play the same role across agents: they integrate the outputs of Explorers, Conservatives, and 
Pruners; calculate confidence intervals; apply hysteresis and dwell-time windows to prevent oscillation; and 
enforce gas budgets. They do not dictate truth but arbitrate among competing perspectives, producing a 
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balanced, query-temporal consolidation of z-axis layers similar to how MoE gates route inputs to specialized 
experts. 

Aligners 
Aligners extend concepts from ontology alignment and graph neural networks (GNNs). In GNNs, node 
representations are iteratively updated based on neighborhood features, often across heterogeneous graphs. 
Aligners in SON similarly specialize in mapping local objects to foreign z-axis layers or canonical anchors, 
without requiring global reconciliation. Their function is to maximize the utility of queries by providing 
provisional alias mappings, echoing schema-matching algorithms in ontology engineering. 

Curators 

Curators can be compared to attention mechanisms in neural networks or retrieval selectors in retrieval-
augmented generation (RAG). Their role is not to merge all layers but to decide, given a query and a budget, 
which z-axis layers to include in the reasoning process. This reflects established practice in ensemble 
methods where not all experts are consulted; instead, a subset is chosen dynamically to maximize eZiciency. 
Curators operationalize SON’s principle that consolidation is query-temporal, not global: they filter layers for 
relevance rather than striving for universal integration. 

Summary of Connections 

• Explorers ↔ GAN Generators: propose new edges and mappings. 
• Conservatives ↔ GAN Discriminators / RL Critics: evaluate and gate proposals. 
• Pruners ↔ Error-Corrective Feedback / Down-weighted Experts in MoE: remove low-value contributions. 
• Orchestrators ↔ MoE Gating Functions: arbitrate and allocate budget across specialized roles. 
• Aligners ↔ Ontology Alignment / GNN Neighborhood Aggregation: create provisional mappings across 

schemas and z-axis layers. 
• Curators ↔ Attention / RAG Selectors: filter relevant layers under query-time constraints. 

These classes illustrate that SON’s agent ecosystem is not an invention without precedent, but a contextual 
adaptation of well-established adversarial, ensemble, and graph-balancing principles to the domain of 
persistent, multi-layer knowledge networks. 

Mathematical Balancing Model 
The balancing of adversarial agents in SON can be expressed through a set of simple but powerful equations. 
These capture how confidence is aggregated, how diversity is enforced, how oscillation is prevented, and how 
agent reputations are updated over time. 

Agent Confidence Output 
Each agent produces a confidence score for a candidate edge E, bounded between 0 and 1: 

cᵢ(E) ∈ [0, 1] 

Explorers tend toward higher speculative scores, Conservatives tend toward lower precision-focused scores, 
Pruners may contribute negative or decaying scores, and Aligners add mapping likelihoods across z-axis 
layers. 

Orchestrator Aggregation 
The Orchestrator integrates these scores into a single composite confidence using reputation-weighted 
averaging: 
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C(E) = ( Σ (wᵢ × cᵢ(E)) ) / ( Σ wᵢ ) 

Here, wᵢ is the current reputation weight of agent i, updated continuously based on past performance. 

Diversity Quorum 

Promotion of an edge into the declarative layer requires both a confidence threshold and agreement across 
heterogeneous strategies: 

Promote if: C(E) ≥ τ AND at least q distinct agent classes agree 

This prevents dominance by a single class of agents (e.g., only Explorers). 

Hysteresis and Dwell-Time 

To prevent oscillation between promotion and demotion, SON applies hysteresis thresholds and minimum 
dwell-times: 

Promote if: C(E) ≥ τᵖʳᵒᵐᵒᵗᵉ 

Demote if: C(E) ≤ τᵈᵉᵐᵒᵗᵉ 

where τᵈᵉᵐᵒᵗᵉ < τᵖʳᵒᵐᵒᵗᵉ. 

Edges must also remain above or below these thresholds for a minimum time window T before status 
changes. 

Error-Driven Reputation Updates 
When the true outcome of an edge is observed (validated or rejected), each agent’s contribution is compared 
to that outcome: 

Error: eᵢ(E) = cᵢ(E) – y(E) 

where y(E) = 1 if the edge validated, 0 if it failed. 

Agent reputation is then adjusted: 

wᵢ ← wᵢ × exp( – η × eᵢ(E)² ) 

with η as a learning rate. Agents whose scores align with reality gain reputation, while those consistently 
misaligned lose influence. 

Interpretation 

• Explorers are rewarded when speculative links prove valid, penalized otherwise — just like GAN 
generators. 

• Conservatives are rewarded when they block bad edges, penalized if they reject edges that later validate 
— like GAN discriminators or RL critics. 

• Pruners are rewarded for removing weak or contradictory edges, analogous to error-correction feedback 
in ensemble methods. 

• Orchestrators function like gating networks in Mixture-of-Experts, enforcing quorum, hysteresis, and 
budget limits. 

• Aligners / Curators are analogous to GNN neighborhood aggregation and attention mechanisms, 
ensuring that cross-layer and query-time selection remains eZicient. 
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Stabilization Dynamics 
Adversarial systems are prone to oscillation (edges promoted then immediately demoted) or collapse (agents 
converging on the same behavior, losing diversity). SON avoids these failure modes through stabilization 
mechanisms borrowed from ensemble learning, graph reasoning, and control systems. 

Hysteresis (Preventing Oscillation) 
Promotion and demotion use separate thresholds, creating a buZer zone: 

Promote if: C(E) ≥ τᵖʳᵒᵐᵒᵗᵉ 

Demote if: C(E) ≤ τᵈᵉᵐᵒᵗᵉ 

with τᵈᵉᵐᵒᵗᵉ < τᵖʳᵒᵐᵒᵗᵉ. 

Edges that drift in between are left unchanged, preventing oscillation from small fluctuations. 

Dwell-Time Windows 
An edge must stay above or below threshold for a minimum time T before promotion or demotion is enacted: 

Change only if: condition holds continuously for T steps 

This ensures that only persistent patterns, not transient noise, alter the declarative layer. 

Diversity Quorum 
Promotion requires agreement across multiple agent classes, not just one: 

At least q distinct agent types must agree 

For example, an Explorer alone cannot promote an edge; it must be corroborated by at least one Conservative 
or Aligner. This prevents monoculture bias. 

Circuit Breakers (Budget Protection) 
To prevent runaway spending or “denial-of-wallet,” the orchestrator halts or throttles tasks when marginal 
utility collapses: 

Stop if: Remaining budget ≤ bₘᵢₙ 

Stop if: Marginal Utility (MU) < τ for m steps 

Stop if: EZiciency is falling while spend rate is rising 

These breakers ensure graceful degradation instead of uncontrolled collapse. 

Error Back-Propagation (Learning from Mistakes) 
Each agent’s weight is adjusted based on alignment with actual outcomes: 

wᵢ ← wᵢ × exp( – η × eᵢ² ) 

where eᵢ = prediction – outcome. 

Agents that consistently over-promote lose influence; those that consistently validate useful links gain 
influence. This prevents domination by unreliable strategies. 
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Combined ESect 
• Hysteresis stops edges from flipping status repeatedly. 
• Dwell-time requires persistence before action. 
• Diversity quorum ensures that multiple strategies support a claim. 
• Circuit breakers prevent budget exhaustion from runaway exploration. 
• Error back-propagation continuously re-weights agents toward reliable performance. 

Together these mechanisms ensure that SON’s adversarial ecosystem converges toward stable, resilient 
behavior — not by eliminating disagreement, but by managing it productively. 

Example: SOC Attack Path Inference 
To illustrate how adversarial balancing and stabilization operate in SON, consider a Security Operations 
Center (SOC) deployment. The SOC maintains objects representing accounts, hosts, processes, and events, 
with z-axis layers linking them to observations, inferences, and external threat intelligence references. 

Step 1: Event Detection (Explorer Proposes) 

A login attempt is observed from a privileged account to an unusual host. An Explorer agent proposes a new 
edge: “this may indicate lateral movement.” 

• Explorer assigns a relatively high confidence score (e.g., 0.7) despite limited supporting evidence. 
• The edge is introduced into the inference layer but not yet crystallized. 

Step 2: Conservative Challenge 

A Conservative agent evaluates the same edge against schema rules and corroborating evidence. It notes 
that no secondary indicators (e.g., repeated attempts, privilege escalation patterns) are present. 

• Conservative assigns a low score (e.g., 0.2). 
• This disagreement prevents premature promotion of the edge. 

Step 3: Pruner Intervention 

A Pruner agent inspects the edge. Since it is very recent, it does not prune it immediately but sets a decay 
timer. If corroboration does not appear within a window of time, confidence will fall automatically. 

Step 4: Aligner & External Validation 

An Aligner agent maps the suspicious process to a known binary object in a foreign z-axis threat intelligence 
layer. Through a DAO-mediated query, external corroboration is retrieved: the binary is flagged as malicious 
by two independent feeds. 

• Aligner increases mapping confidence. 
• External validation boosts the edge’s aggregated score. 

Step 5: Orchestrator Balancing 

The Orchestrator aggregates inputs: 

• Explorer: 0.7 
• Conservative: 0.2 
• Aligner (external evidence): 0.8 
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• Weighted ensemble yields C(E) = 0.65. 

Since quorum is met (Explorer + Aligner) and the score surpasses the promotion threshold after dwell-time, 
the edge is promoted into the declarative layer: “lateral movement confirmed with high probability.” 

Step 6: Reputation Feedback 

• The Explorer receives partial credit: it surfaced the possibility early, but its raw confidence overshot the 
validated outcome. 

• The Conservative loses minor reputation: its skepticism delayed detection but was ultimately disproven. 
• The Aligner and the external DAO providers gain reputation for corroboration that proved decisive. 
• The Pruner neither gains nor loses reputation but prevented clutter by keeping the edge provisional until 

external evidence arrived. 

Stabilization in Action 

• Hysteresis: The edge was not promoted at first sight but only after surpassing the promotion threshold 
for suZicient time. 

• Diversity quorum: Multiple independent agent classes (Explorer + Aligner) agreed before crystallization. 
• Circuit breaker: DAO queries consumed gas but remained within the budget, preventing uncontrolled 

escalation. 
• Error feedback: Agent reputations shifted in proportion to how their judgments aligned with the 

validated outcome. 

Outcome 

The SOC now has a declarative fact: “A privileged account engaged in lateral movement to host X via 
malicious binary Y.” Importantly, this fact was not the result of a single model but of adversarial interplay, 
stabilization dynamics, and evidence-backed promotion. The process illustrates how SON turns 
disagreement into resilience, using economic constraints and balancing algorithms to yield trustworthy 
knowledge. 

Synthesis 
The SON model demonstrates that resilience in distributed knowledge networks does not emerge from 
consensus alone but from the structured opposition of specialized agents. Explorers, Conservatives, Pruners, 
Orchestrators, and optional roles such as Aligners and Curators embody strategies already validated in 
adversarial learning (GANs), mixture-of-experts architectures, ensemble weighting, and graph-based 
reasoning. Their interaction is governed not by the need to reconcile all z-axis layers into a single ontology, but 
by the pragmatic goal of creating local, provisional mappings that improve query utility. Stabilization 
mechanisms — hysteresis, dwell-time windows, diversity quorums, circuit breakers, and error-driven 
reputation updates — ensure that this adversarial ecosystem converges toward usable outcomes without 
collapsing into oscillation or monoculture. In this way, SON transforms disagreement into a driver of 
robustness, building knowledge systems that are persistent, auditable, and query-temporal, rather than 
brittle or prematurely unified. 
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Adversarial Challenges and Open Questions 
While SON 2.0 presents a coherent model for persistent, adversarially resilient knowledge systems, several 
challenges warrant explicit consideration. These are not flaws unique to SON but systemic risks faced by any 
attempt to scale persistent, multi-layer reasoning across heterogeneous domains. 

Excessive Compute Requirements 
Challenge: 

SON requires continual housekeeping, confidence re-scoring, and evidence maintenance across multiple z-
axis layers. Critics may argue that such continuous recomputation could become prohibitively expensive as 
graphs scale in size and heterogeneity. 

Response: 

SON mitigates this through gas-metered execution and circuit breakers. Unlike monolithic systems that 
attempt to keep all inferences globally consistent, SON enforces budget-bounded reasoning. Housekeeping 
agents operate only within defined gas contracts, pruning exploration when marginal utility drops. This 
ensures that compute growth tracks with the value produced, not with the raw size of the graph. SON is 
therefore not a “perpetual compute engine” but a budget-aware substrate. 

Inference Validity Across Expanding Layers 
Challenge: 

As the number of z-axis layers grows, the risk increases that inferences drawn between distant or weakly 
correlated objects may lack determinism. This raises concern over whether SON can deliver suZiciently 
strong links to support deterministic logic graphs or automated reasoning at scale. 

Response: 

SON explicitly treats inferences as contextual and provisional, not deterministic. The declarative layer 
contains only evidence-backed facts. Inferences remain in higher layers until they survive repeated 
adversarial validation, at which point they may crystallize. This avoids contaminating the base graph with 
speculative links. Moreover, SON does not attempt to reconcile all layers: consolidation is query-temporal, 
driven by Curator and Orchestrator agents that select the minimum set of relevant layers. Determinism, 
where required, is enforced only on the narrowed scope of a query, not across the global system. 

Value vs. Noise in Cross-Layer Mapping 

Challenge: 

Cross-layer aliasing risks generating many low-value mappings that consume resources but produce little 
actionable value. Without careful filtering, the graph could be overwhelmed by weak correspondences. 

Response: 

SON employs quorum rules and hysteresis to ensure that only mappings with corroborated, persistent 
support cross thresholds. Aligners and Curators selectively maintain local aliases for foreign objects, but 
these are only elevated into the declarative layer if they demonstrate repeated utility. This ensures that 
“cheap” or noisy correspondences are naturally pruned before they can dominate compute or decision-
making. 
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Economic Fairness and Access Asymmetry 
Challenge: 

A common critique of gas-based systems is that wealthier tenants could dominate reasoning by outspending 
smaller participants. 

Response: 

In SON, gas is scoped locally. Budgets constrain only a tenant’s own reasoning agents; no tenant can 
consume another’s budget. Cross-domain interactions are mediated by DAOs under explicit contracts, but 
gas expenditure remains under local control. SON therefore avoids competitive auction dynamics and 
focuses instead on bounded autonomy. 

Adversarial Manipulation of Evidence or Reputation 
Challenge: 

Attackers could attempt to poison evidence chains, inflate confidence scores, or collude in DAOs to distort 
reputation systems. 

Response: 

SON addresses this through three safeguards: 

Provenance enforcement: all evidence is chained, signed, and auditable. 

Diversity quorums: promotion requires corroboration across heterogeneous sources. 

Error back-propagation: agents and providers that repeatedly mislead lose influence automatically. 

While adversarial manipulation cannot be eliminated, SON’s architecture ensures that bad actors degrade 
their own reputation faster than they can distort the system. 

Synthesis 
These challenges underscore that SON is not a universal inference engine but a contract-based substrate for 
managing knowledge under persistent, adversarial conditions. Its novelty lies not in eliminating uncertainty, 
but in bounding it through persistence, provenance, and economics. By making compute explicit, treating 
inferences as provisional, and forcing every action to carry cost and evidence, SON constrains the very risks 
that otherwise make large-scale, adversarial knowledge systems brittle or untrustworthy.  



Shared Object Networking 2.0 

 46 

Conclusion 
Part 1 has outlined the foundations of SON 2.0, a layered protocol for persistent, decentralizable knowledge 
and agentic reasoning. Its aim is not to replace existing models but to provide the connective tissue — the 
substrate — in which they can persist, interoperate, and be held accountable. The argument has unfolded 
through several stages, each building toward the case that persistence, provenance, adversarial resilience, 
and economic contracts can coexist within a single architectural frame. 

Objects and Schemas 
At the heart of SON are persistent, schema-bound objects. Like packets on the internet, they carry metadata 
that routes and links them, while sensitive payloads remain sealed under Watchtower control. This design 
ensures that knowledge is both durable and interpretable, enabling reuse across time, context, and domain 
without duplication or drift. 

Z-Axis Layers 
Surrounding these objects are z-axis layers that separate declarative facts, inferences, contexts, and external 
references. These layers absorb uncertainty and disagreement, ensuring that multiple perspectives can 
coexist without corrupting the base object. Importantly, consolidation is local and temporal: alias mappings 
are maintained when useful for queries, but no system is forced to reconcile its worldview with another. This 
makes SON scalable in practice — one never needs to “boil the ocean.” 

Confidence, Reputation, and Evidence 

Trust in SON emerges not from single calculations but from adversarial interplay. Confidence attaches to 
relationships, reputation to the agents and sources that make claims, and evidence to the structured chains 
that link assertions to their origins. Like case files, evidence chains provide transparency and auditability; like 
adversarial training, confidence emerges only when claims survive repeated challenge. Together, these 
mechanisms create a system that is probabilistic yet accountable, uncertain yet auditable. 

Why SON Learns 

Unlike static systems that only store or discard information, SON treats mistakes as feedback. When edges 
are pruned or demoted, error signals propagate backward through agents and sources, lowering reputations 
and recalibrating strategies. When edges crystallize into facts, reinforcement flows in the opposite direction. 
In this way, SON mirrors the role of back-propagation in neural networks, turning error into improvement. The 
z-axis becomes not just a holding space for uncertainty, but a learning substrate that grows more resilient 
with time. 

Access Control via Watchtower 
Persistence alone is not enough: knowledge must remain private and governed. SON embeds access control 
into the object model through Watchtower sub-objects, which enforce policies at the point of consumption 
rather than at publication. By separating metadata from sealed payloads, and by requiring both attribution 
and attestation, SON makes it possible for sensitive data to circulate safely. Every request becomes a 
contractual transaction, mediated by policy and logged with accountability. 

DAO and Gas 
To ensure sustainability, every action in SON is tied to an explicit economic contract. Gas metering 
guarantees that reasoning is bounded by budget, while DAOs provide governance for cross-domain 
transactions. Locally, gas prevents runaway housekeeping. Globally, DAO-style cooperatives ensure that 
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external work is purchased under transparent, enforceable rules. Together, they transform resource 
consumption from a hidden liability into a visible signal of value. 

Adversarial Agents and Balancing Algorithms 
Resilience in SON is not achieved through harmony but through structured opposition. Explorers propose 
edges, Conservatives resist them, Pruners trim them back, Orchestrators arbitrate under budget, while 
Aligners and Curators map and select layers for query use. Their interactions mirror well-established 
paradigms — GANs, mixture-of-experts, GNNs — and are stabilized through hysteresis, diversity quorums, 
dwell-time windows, and circuit breakers. Disagreement becomes not a failure but a source of strength. 

Adversarial Challenges 

Part 1 has also acknowledged the open questions. Scaling adversarial agents without excessive compute, 
ensuring inference validity across proliferating z-axis layers, balancing economic fairness with governance 
complexity, preserving human interpretability, and enforcing compliance in a persistent network are all active 
areas of concern. SON does not claim to eliminate these risks, but to bound them — making compute 
explicit, inference provisional, economics auditable, and governance polycentric. 

Closing Perspective 
SON 2.0 is more than a design pattern: it is a philosophy for how knowledge should persist and evolve. 
Objects give the network stability; z-axis layers provide adaptability; housekeeping agents introduce 
resilience; confidence, reputation, and evidence add rigor; Watchtower ensures privacy and governance; and 
DAO-style economics make every operation accountable. Taken together, these foundations establish SON 
as a protocol for a knowledge economy: one that is persistent, adversarially resilient, economically aligned, 
and globally scalable. 

Part 2 will move from foundations to architecture and implementation. It will show how these principles 
assemble into a minimum viable product, beginning with a Security Operations Center. The MVP will 
demonstrate how SON operates in practice — ingesting events, crystallizing evidence-backed patterns, 
enforcing privacy through Watchtower, and managing reasoning under explicit contracts. From there, the 
architecture can extend outward, scaling into a distributed, multi-tenant, and ultimately global knowledge 
substrate. 

To borrow again from the language of hockey: the puck is already moving. The question is whether we will 
skate to where it is going with persistence, provenance, and agency — or allow our knowledge systems to drift 
into fragility, opacity, and unaccountable control. SON 2.0 oZers a path to the former. 


